Abstract:
Methods and systems are presented to reduce the illumination spot size projected onto a measurement target and associated spillover onto area surrounding a measurement target. In one aspect, a spatial light modulator (SLM) is located in the illumination path between the illumination light source and the measurement sample. The SLM is configured to modulate amplitude, phase, or both, across the path of the illumination light to reduce wavefront errors. In some embodiments, the desired state of the SLM is based on wavefront measurements performed in an optical path of the metrology system. In another aspect, an illumination aperture having an image plane tilted at an oblique angle with respect to a beam of illumination light is employed to overcome defocusing effects in metrology systems that employ oblique illumination of the measurement sample. In some embodiments, the illumination aperture, objective lens, and specimen are aligned to satisfy the Scheimpflug condition.
Abstract:
Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
Abstract:
Metrology methods, systems and targets are provided, which implement a side by side paradigm. Adjacent cells with periodic structures are used to extract the overlay error, e.g., by introducing controllable phase shifts or image shifts which enable algorithmic computation of the overlay. The periodic structures are designed to exhibit a rotational symmetry to support the computation and reduce errors.
Abstract:
A method for determining an overlay offset may include, but is not limited to: obtaining a first anti-symmetric differential signal (ΔS 1 ) associated with a first scatterometry cell; obtaining a second anti-symmetric differential signal (ΔS 2 ) associated with a second scatterometry cell and computing an overlay offset from the first anti-symmetric differential (ΔS 1 ) signal associated with the first scatterometry cell and the second anti-symmetric differential signal (ΔS 2 ) associated with the second scatterometry cell.
Abstract:
An optical system may include an objective, a source of illumination, an illumination system having illumination optics configured to direct the illumination onto the objective, and at least two dynamic optical array devices located at a pupil conjugate plane and a field conjugate plane, respectively in the illumination optics. The dynamic optical array devices are configured to control one or more properties of illumination coupled from the illumination system to the objective.
Abstract:
The present invention may include acquiring a plurality of overlay metrology measurement signals from a plurality of metrology targets distributed across one or more fields of a wafer of a lot of wafers, determining a plurality of overlay estimates for each of the plurality of overlay metrology measurement signals using a plurality of overlay algorithms, generating a plurality of overlay estimate distributions, and generating a first plurality of quality metrics utilizing the generated plurality of overlay estimate distributions, wherein each quality metric corresponds with one overlay estimate distribution of the generated plurality of overlay estimate distributions, each quality metric a function of a width of a corresponding generated overlay estimate distribution, each quality metric further being a function of asymmetry present in an overlay metrology measurement signal from an associated metrology target.
Abstract:
An overlay metrology system includes an overlay metrology tool configurable to generate overlay signals with a plurality of recipes and further directs an illumination beam to an overlay target and collects radiation emanating from the overlay target in response to the at least a portion of the illumination beam to generate the overlay signal with the particular recipe. The overlay metrology system further acquires two or more overlay signals for a first overlay target using two or more unique recipes, subsequently acquires two or more overlay signals for a second overlay target using the two or more unique recipes, determines candidate overlays for the first and second overlay targets based on the two or more overlay signals for each target, and determines output overlays for the first and second overlay targets based on the two or more candidate overlays for each target.
Abstract:
Methods and systems for performing spectroscopic measurements of semiconductor structures including ultraviolet, visible, and infrared wavelengths greater than two micrometers are presented herein. A spectroscopic measurement system includes a combined illumination source including a first illumination source that generates ultraviolet, visible, and near infrared wavelengths (wavelengths less than two micrometers) and a second illumination source that generates mid infrared and long infrared wavelengths (wavelengths of two micrometers and greater). Furthermore, the spectroscopic measurement system includes one or more measurement channels spanning the range of illumination wavelengths employed to perform measurements of semiconductor structures. In some embodiments, the one or more measurement channels simultaneously measure the sample throughout the wavelength range. In some other embodiments, the one or more measurement channels sequentially measure the sample throughout the wavelength range.
Abstract:
A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light before projection onto a specimen by a high numerical aperture objective. After interaction with the specimen, the collected light is passes through a wavelength dispersive element that projects the range of AOIs along one direction and wavelength components along another direction of a two-dimensional detector. Thus, the measurement signals detected at each pixel of the detector each represent a scatterometry signal for a particular AOI and a particular wavelength. In another aspect, a hyperspectral detector is employed to simultaneously detect measurement signals over a large wavelength range, range of AOIs, and range of azimuth angles.
Abstract:
Methods and systems for simultaneous detection and linked processing of field signals and pupil signals are presented herein. In one aspect, estimates of one or more structural or process parameter values are based on field measurement signals, pupil measurement signals, or both. In addition, the quality of the measurements of the one or more structural or process parameter values is characterized based on the field measurement signals, pupil measurement signals, or both. In some embodiments, field measurement signals are processed to estimate one or more structural or process parameter values, and pupil measurement signals are processed to characterize the field measurement conditions. In some other embodiments, pupil measurement signals are processed to estimate one or more structural or process parameter values, and field measurement signals are processed to characterize the pupil measurement conditions.