Abstract:
Techniques for providing heat to a small area and apparatuses capable of providing heat to a small area are provided. In an illustrative embodiment, by way of non-limiting example, a heating element includes a substrate having at least one wall extending from a portion thereof so as to define a series of a contiguously connected top surfaces thereby, and a conducting layer including conducting materials and being substantially arranged upon the top surfaces, wherein the outermost portion of the at least one wall has an etched portion thereon. The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
Abstract:
The disclosed invention relates to apparatuses and techniques for a resistive heating device. The heating device may include a substrate, at least one electrically-conductive elongated structure disposed on the substrate, the at least one electrically-conductive elongated structure including at least one resistive portion having a conductivity lower than tha of the remaining portions of the at least one electrically-conductive elongated structure, and at least one heat- conductive column disposed on the at least one resistive portion of the at least one electrically-conductive elongated structure.
Abstract:
Nano structure patterning formation includes coating a part of a structural guide with a hydrophobic polymer, positioning the structural guide on a substrate, coating at least a part of the substrate with a film made of a block copolymer, and annealing the film made of the block copolymer to align the block copolymer.
Abstract:
A piezoelectric nanodevice may include a first substrate having formed thereon a multiple number of nanorods and a second substrate having formed thereon a multiple number of piezoelectric nanorods. The first substrate associates with the second substrate to generate friction between the nanorods of the first substrate and the piezoelectric nanorods of the second substrate.
Abstract:
Compositions, systems and methods for using a nanoparticle composite to act as a valve within a microfluidic conduit to regulate fluid flow therethrough are provided. The nanoparticle composite includes a core having magnetic particles and Au particles and includes a hydrogel coating surrounding the core. The size of the nanoparticle composite is controlled by causing the hydrogel coating to lose water or absorb water, thus decreasing or increasing the size of the nanoparticle composite within the microfluidic conduit.
Abstract:
Apparatus and method for collecting, transferring and fabricating structures comprising nanoparticles based on application of charge. Nanoparticles with a first polarity are transferred to a planar surface of a particle collection device when an electrical charge is applied to said surface with an opposite polarity to the first polarity. In one embodiment a the nanoparticles are transferred from the planar surface to a base plate through application of differential charge.
Abstract:
Transparent structures, electronic devices, and methods for making such structures/devices are provided. A transparent structure may include a transparent substrate having a plurality of micro- or nano-scale structures, at least one substance configured to block near-infrared or infrared radiation and partially cover at least substantial portions of the substrate and the plurality of micro- or nano-scale structures, and at least one photocatalyst configured to at least partially cover an outermost surface of the transparent structure.
Abstract:
A self-cleaning surface and methods of forming a self-cleaning surface that has one or more of hydrophobic characteristics and hydrophilic properties are provided. The self-cleaning surface includes a first layer formed from first nanoparticles that are applied on a substrate. A second layer of second nanoparticles that adhere to the first nanoparticles are then formed on the first layer.
Abstract:
Transparent structures, electrochromic devices, and methods for making such structures/devices are provided. A transparent structure may include a transparent substrate having a plurality of micro- or nano-scale structures, at least one substance configured to block near-infrared or infrared radiation and partially cover at least substantial portions of the substrate and the plurality of micro- or nano-scale structures, and at least one photocatalyst configured to at least partially cover an outermost surface of the transparent structure.