Abstract:
The multi-channel optical device includes a demultiplexer in a laser cavity. The demultiplexer is configured to demultiplex a multi-channel light beam into a plurality of channels. The demultiplexer limits the wavelengths of the channels that are output from the laser cavity. The gain element includes quantum dots as the gain medium.
Abstract:
The multi-channel optical device includes a demultiplexer in a laser cavity. The demultiplexer is configured to demultiplex a multi-channel light beam into a plurality of channels. The demultiplexer limits the wavelengths of the channels that are output from the laser cavity. The gain element includes quantum dots as the gain medium.
Abstract:
An optical device includes an echelle grating and input waveguide arranged such that the echelle grating receives an input signal that exits from a port of the input waveguide. The echelle grating is configured to reflect the input signal such that when the input signal has a plurality of channels, the input signal separates into output signals that each includes a different one of the channels. The device also includes a plurality of output waveguides that each includes a port positioned to receive one of the output signals. The output waveguides include central waveguides. The central waveguides are the three centermost output waveguides when the total number of output waveguides is odd and the two centermost output waveguides when the total number of output waveguides is even. The central waveguides are positioned such that the grating axis passes through the port associated with one of the central waveguides or passes between the ports associated with the central waveguides.
Abstract:
The optical device includes a waveguide and a light sensor on a base. The light sensor includes a ridge extending from slab regions positioned on opposing sides of the ridge. The ridge includes a multiplication layer and an absorption layer. The absorption layer is positioned to receive at least a portion of the light signal from the waveguide. Additionally, the absorption layer generates a hole and electron pair in response to receiving a photon of the light signal. The multiplication layer is positioned to receive the electron generated in the absorption layer and to generate additional electrons in response to receiving the electron.
Abstract:
The device includes an optical waveguide on a base. The waveguide is configured to guide a light signal through a light-transmitting medium. A light sensor is also positioned on the base. The light sensor including a ridge extending from slab regions. The slab regions are positioned on opposing sides of the ridge. A light-absorbing medium is positioned to receive at least a portion of the light signal from the light-transmitting medium included in the waveguide. The light-absorbing medium is included in the ridge and also in the slab regions. The light-absorbing medium includes doped regions positioned such that an application of a reverse bias across the doped regions forms an electrical field in the light-absorbing medium included in the ridge.
Abstract:
The optical device includes a waveguide and a light sensor on a base. The light sensor includes a ridge extending from slab regions positioned on opposing sides of the ridge. The ridge includes a multiplication layer and an absorption layer. The absorption layer is positioned to receive at least a portion of the light signal from the waveguide. Additionally, the absorption layer generates a hole and electron pair in response to receiving a photon of the light signal. The multiplication layer is positioned to receive the electron generated in the absorption layer and to generate additional electrons in response to receiving the electron.
Abstract:
The optical device includes a waveguide on a base. The device also includes a modulator on the base. The modulator includes an electro-absorption medium configured to receive a light signal from the waveguide. The modulator also includes field sources for generating an electrical field in the electro-absorption medium. The electro-absorption medium is a medium in which the Franz-Keldysh effect occurs in response to the formation of the electrical field in the electro-absorption medium. The field sources are configured so the electrical field is substantially parallel to the base.
Abstract:
An optical system includes an optical device having waveguides defined in a first light transmitting medium. The optical device includes stops extending upward from a laser platform. The system also includes a laser bar having a plurality of lasers. The laser bar is positioned on the platform such that each laser is aligned with one of the waveguides. The laser bar includes alignment trenches that each includes a secondary stop extending upward from a bottom of the alignment trench. The secondary stop includes layers of material having different composition. The stops each extend into an alignment trenches such that each stop contacts one of the secondary stops.