Abstract:
Provided is a pneumatic radial tire including a carcass layer composed of a carcass ply 12 and a spiral belt layer 26 composed of steel cords wound spirally substantially in parallel with each other to a tire equator surface. When the ratio of spacing R1 between adjacent steel cords of the spiral belt layer 26 is shown by R1=(50−E×ds)/50, the ratio of spacing R1 is 0.45 or less as well as the total sectional area S of the steel cords applied per 50 mm width of the spiral belt layer is 7.5 mm2 or less (E shows the number of steel cords applied per 50 mm width of the spiral belt layer, and ds shows the diameter (mm) of each steel cord). The number of steel cords E applied per 50 mm of width ranges from 66 to 200.
Abstract:
A rubber-steel cord composite is provided having nonlinear physical properties even in a rubber characterized by incompressive properties after vulcanization, and hence the rubber-steel cord composite can show low rigidity and flexible properties in a low-strain region and, on the other hand, can show high rigidity in a high-strain region. The rubber-steel cord composite is provided by bundling steel linear objects 1 subjected to spiral shape forming at substantially identical pitches in an approximately identical phase without twisting, the steel cord being embedded in rubber.
Abstract:
A bit rate converter for converting a first encoded animation image data to a second animation image data, having a different bit rate. The converter stores an assessment value indicating the importance level within each reproduction time interval with respect to the first animation image data. Second animation image data is generated by arithmetically determining the bit rate of the second animation image data on the basis of the bit rate information on the first animation image data and the assessment value indicating the importance level within a preselected time interval with respect to the first animation image data. Accordingly, a larger amount of code is preferentially allocated to the time interval having an assessment value of higher importance level.
Abstract:
In a car-mounted terminal device 1 including a virtual machine 101 requesting output of first information and a navigation portion 115 requesting output of second information, a first index representing an information quantity of first information is created and a timing for outputting the first information is planned on the basis of the first index so created. A second index representing an information quantity of second information is created and a timing for outputting the first information or the second information is planned on the basis of the first index and the second index.
Abstract:
A steel cord for reinforcing a rubber product has a multilayer structure consisting of two or more layers including a core, or a structure consisting of seven or more strands twisted in the same direction at the same pitch. In the steel cord, at least one of three strands that are successively adjacent to one another or that are in mutual contact is formed of two filaments that are paired substantially parallel to each other. The direction of pairing the two filaments of each strand is substantially the same over the entire length of the cord. Each of the remaining strands is formed of a single filament.
Abstract:
A steel cord is disclosed, which has a core-sheath double layer structure having a 2+7 cord construction or a 2+8 cord construction. A twisting direction of the core is the same as that of the sheath, a forming rate Rc of filaments of the core is 103 to 120%, and a forming rate Rs of filaments of the sheath is 102 to 115%. A pneumatic radial tire using such steel cords in a belt layer is also disclosed.
Abstract:
A steel cord comprising a core and a sheath arranged around the core. The core consists of two steel filaments, and the sheath consists of eight steel filaments. The diameter of each of the filaments is in a range from 0.30 to 0.42 mm, and a difference D.sub.c -D.sub.s between the diameter D.sub.c of the filaments of the core and that D.sub.s of the sheath is not less than 0.04 mm. The twisted direction of the core is the same as that of the sheath, and a ratio P.sub.s /P.sub.c between a pitch P.sub.s of the sheath and that of P.sub.c of the core is in a range from 1.4 to 3.0.
Abstract:
An in-vehicle terminal (101) is provided, which has a function ensuring that computer resource secured by a virtual machine (1a1) or a virtual machine (1b1) is controlled within a limit value of the computer resource that is allocated to the corresponding virtual machine, or a function which is capable of executing multiple virtual machines appropriately.When the virtual machine (1a1) or the virtual machine (1b1) requests securing the computer resource, the in-vehicle terminal (101) requests the OS (143) to secure computer resource in response to the request, if the requested resource is lower than the limit value of the computer resource that is allocated to the corresponding virtual machine. Furthermore, the in-vehicle terminal (101) checks at predetermined intervals the continuously selected count of the virtual machine previously selected, and if the continuously selected count is equal to the limit value, or the virtual machine is in standby state, a different virtual machine is selected and the OS (143) is instructed to execute the selected virtual machine.
Abstract:
A steel cord has a multi-twist structure in which N (N=2 to 8) strands 2 are twisted, each strand 2 being formed by twisting a plurality of element wires 1 and having a substantially elliptical cross-section, wherein d1/d2>1.08 is satisfied, where the major diameter of the strand 2 is represented by d1 and the minor diameter is represented by d2, and εe defined by the following equation: εc=√(−b/2+√(b2/4−c))−1 (in the equation, b represents −1+π2(−4R2+d2)/P2, c represents π2d2k(4π2R2+P2)/P4, R represents (D−d)/2, k represents tan2(π/2−π/N), and d represents (d1+d2)/2) satisfies εc>0.005, where the diameter of a circle circumscribing the cord is represented by D (mm) and the twist pitch of the cord is represented by P (mm).
Abstract:
A tire for a two-wheeled vehicle in which cornering controllability (cornering performance) is improved without impairing various performances of the tire such as straight-ahead driving performance, high-speed ability, ride comfort, and uniformity is provided.It is a tire for a two-wheeled vehicle including a tread portion 11, side wall portions 12 disposed radially inside the tire from both edges thereof, bead portions 31 continuing radially inside the tire, a carcass layer 22 for reinforcing these portions between bead cores 21 embedded in the bead portions, and a spiral belt 23 formed outside the carcass layer in the radial direction of the tire by spirally wound so as to extend substantially in parallel to the circumferential direction of the tire. The spiral belt layer 23 is formed of a steel-rubber compound material by embedding one or more spirally shaped steel element wires in rubber without twisting the same with each other, and the element wire diameter of the steel element wire is set in a range from 0.25 mm to 0.60 mm.