-
公开(公告)号:DE60009974D1
公开(公告)日:2004-05-27
申请号:DE60009974
申请日:2000-02-09
Applicant: LUCENT TECHNOLOGIES INC
Inventor: CHRAPLYVY ANDREW ROMAN , EICHENBAUM BERNARD RAYMOND , EMERY GARY PATRICK , HABER JANICE BILECKY , KALISH DAVID , KUMMER RAYMOND BRADFIELD
Abstract: A high-capacity optical fiber network Ä100, 200Ü includes wavelength-division multiplexing (WDM) within the 1.4 micron ( mu m) wavelength region (i.e., 1335-1435 nm). Such a system includes optical fiber Ä130Ü whose peak loss in the 1.4 mu m region is less than its loss at 1310 nm. The optical fiber has a zero dispersion wavelength ( lambda 0) at about 1310 nm, and linear dispersion between about 1.5 and 8.0 ps/nm-km within the 1.4 mu m region. At least three WDM channels operate at 10 Gb/s in the 1.4 mu m wavelength region and have a channel separation of 100 GHz. In one illustrative embodiment of the invention, a broadcast television channel, having amplitude modulated vestigial sideband modulation, simultaneously operates in the 1.3 mu m region (i.e., 1285-1335 nm) and/or the 1.55 mu m region (i.e., 1500-1600 nm). In another embodiment of the invention, 16 digital data channels are multiplexed together in the 1.55 mu m region, each channel operating at about 2.5 Gb/s. Raman amplifiers Ä103, 113Ü are used for amplification in the 1.3 mu m and the 1.4 mu m wavelength regions, whereas an Erbium amplifier Ä123Ü is used for amplification in the 1.55 mu m wavelength region.
-
公开(公告)号:CA2260478C
公开(公告)日:2003-01-21
申请号:CA2260478
申请日:1999-01-26
Applicant: LUCENT TECHNOLOGIES INC
Inventor: KUMMER RAYMOND BRADFIELD , JUDY ARTHUR F , REED WILLIAM ALFRED , PECKHAM DAVID WAYNE , KALISH DAVID
Abstract: Simultaneous dense WDM operation in both the 1310 nm and 1550 nm transparency windows of silica-based optical fiber, is enabled by a fiber design providing for nulled dispersion within a critically positioned wavelength range. Desig n provides for values of dispersion in both windows sufficiently low for desired per-channe l bit rate, and, at the same time, sufficiently high to maintain effects of non-linear dispersion within tolerable limits for WDM operation. Fiber fabrication and system design are described.
-
公开(公告)号:AT214037T
公开(公告)日:2002-03-15
申请号:AT99305360
申请日:1999-07-06
Applicant: LUCENT TECHNOLOGIES INC
Inventor: GLODIS PAUL FRANCIS , GRIDLEY CHARLES FRANCIS , JABLONOWSKI DONALD PAUL , KALISH DAVID , WALKER KENNETH LEE
IPC: C03C3/04 , C03B37/012 , C03B37/018
Abstract: A large optical preform Ä303Ü is made by a modified chemical vapor deposition (MCVD) process by depositing successive layers of core and cladding materials onto the inside surface of a rotating glass tube Ä33Ü having a hydroxyl ion (OH ) level that is less than 0.5 parts per million (ppm) by weight. The tube is then collapsed inwardly to form a core rod Ä301Ü in which the deposited core material Ä31Ü has a diameter that is greater than about 5 millimeters and the deposited cladding material Ä32Ü has an outside diameter that is less than about 15 millimeters. Optionally a machine-vision system Ä140,150,160Ü monitors and controls the diameter of the glass tube by regulating the pressure within the tube; moreover, the machine-vision system monitors and controls the straightness of the tube by varying its rotational speed according to angular position. After the core rod Ä301Ü is formed, it may be plasma etched to remove contaminants, it is overclad with two glass jackets Ä34,35Ü having a hydroxyl ion (OH ) level that is less than 1.0 ppm by weight thereby creating a large preform Ä303Ü from which about 400 kilometers of singlemode optical fiber can be drawn per meter of length of preform.
-
公开(公告)号:BR9902718A
公开(公告)日:2000-03-21
申请号:BR9902718
申请日:1999-07-12
Applicant: LUCENT TECHNOLOGIES INC
Inventor: GLODIS PAUL FRANCIS , GRIDLEY CHARLES FRANCIS , JABLONOWSKI DONALD PAUL , KALISH DAVID , WALKER KENNETH LEE
IPC: C03C3/04 , C03B37/012 , C03B37/018
Abstract: A large optical preform Ä303Ü is made by a modified chemical vapor deposition (MCVD) process by depositing successive layers of core and cladding materials onto the inside surface of a rotating glass tube Ä33Ü having a hydroxyl ion (OH ) level that is less than 0.5 parts per million (ppm) by weight. The tube is then collapsed inwardly to form a core rod Ä301Ü in which the deposited core material Ä31Ü has a diameter that is greater than about 5 millimeters and the deposited cladding material Ä32Ü has an outside diameter that is less than about 15 millimeters. Optionally a machine-vision system Ä140,150,160Ü monitors and controls the diameter of the glass tube by regulating the pressure within the tube; moreover, the machine-vision system monitors and controls the straightness of the tube by varying its rotational speed according to angular position. After the core rod Ä301Ü is formed, it may be plasma etched to remove contaminants, it is overclad with two glass jackets Ä34,35Ü having a hydroxyl ion (OH ) level that is less than 1.0 ppm by weight thereby creating a large preform Ä303Ü from which about 400 kilometers of singlemode optical fiber can be drawn per meter of length of preform.
-
公开(公告)号:AU757989B2
公开(公告)日:2003-03-13
申请号:AU1754500
申请日:2000-02-16
Applicant: LUCENT TECHNOLOGIES INC
Inventor: CHRAPLYVY ANDREW ROMAN , EICHENBAUM BERNARD RAYMOND , EMERY GARY PATRICK , HABER JANICE BILECKY , KALISH DAVID , KUMMER RAYMOND BRADFIELD
Abstract: A high-capacity optical fiber network Ä100, 200Ü includes wavelength-division multiplexing (WDM) within the 1.4 micron ( mu m) wavelength region (i.e., 1335-1435 nm). Such a system includes optical fiber Ä130Ü whose peak loss in the 1.4 mu m region is less than its loss at 1310 nm. The optical fiber has a zero dispersion wavelength ( lambda 0) at about 1310 nm, and linear dispersion between about 1.5 and 8.0 ps/nm-km within the 1.4 mu m region. At least three WDM channels operate at 10 Gb/s in the 1.4 mu m wavelength region and have a channel separation of 100 GHz. In one illustrative embodiment of the invention, a broadcast television channel, having amplitude modulated vestigial sideband modulation, simultaneously operates in the 1.3 mu m region (i.e., 1285-1335 nm) and/or the 1.55 mu m region (i.e., 1500-1600 nm). In another embodiment of the invention, 16 digital data channels are multiplexed together in the 1.55 mu m region, each channel operating at about 2.5 Gb/s. Raman amplifiers Ä103, 113Ü are used for amplification in the 1.3 mu m and the 1.4 mu m wavelength regions, whereas an Erbium amplifier Ä123Ü is used for amplification in the 1.55 mu m wavelength region.
-
公开(公告)号:CA2296945A1
公开(公告)日:2000-08-19
申请号:CA2296945
申请日:2000-01-25
Applicant: LUCENT TECHNOLOGIES INC
Inventor: EICHENBAUM BERNARD RAYMOND , EMERY GARY PATRICK , CHRAPLYVY ANDREW ROMAN , KUMMER RAYMOND BRADFIELD , KALISH DAVID , HABER JANICE BILECKY
Abstract: A high-capacity optical fiber network ¢100, 200! includes wavelength-division multiplexing (WDM) within the 1.4 micron (.mu.m) wavelength region (i.e., 13351435 nm). Such a system includes optical fiber ¢130! whose peak loss in the 1.4 .mu.m region is less than its loss at 1310 nm. The optical fiber has a zero dispersion wavelength (.lambda.0) at about 1310 nm, and linear dispersion between about 1.5 and 8.0 ps/nm-km within the 1.4 .mu.m region. At least three WDM channels operate at 10 Gb/s in the 1.4 .mu.m wavelength region and have a channel separation of 100 GHz. In one illustrative embodiment of the invention, a broadcast television channel, having amplitude modulated vestigial sideband modulation, simultaneously operates in the 1.3 .mu.m region (i.e., 1285-1335 nm) and/or the 1.55 .mu.m region (i.e., 1500-1600 nm). In another embodiment of the invention, 16 digital data channels are multiplexed together in the 1.55 .mu.m region, each channel operating at about 2.5 Gb/s. Raman amplifiers ¢103, 113! are used for amplification in the 1.3 .mu.m and the 1.4 .mu.m wavelength regions, whereas an Erbium amplifier ¢123! is used for amplification in the 1.55 .mu.m wavelength region.
-
公开(公告)号:AU723038B2
公开(公告)日:2000-08-17
申请号:AU7196598
申请日:1998-06-18
Applicant: LUCENT TECHNOLOGIES INC
Inventor: CHANG KAI HUEI , KALISH DAVID , MILLER THOMAS JOHN , PEARSALL MICHAEL L
IPC: G02B6/00 , C03B37/012 , C03B37/014 , C03C25/10 , C03C25/12 , G02B6/02 , G02B6/036 , C03B37/027 , G02B6/18
Abstract: A singlemode optical fiber Ä700Ü having very low loss at 1385 nm, and a practical method for making same are disclosed. A core rod Ä20Ü is fabricated using vapor axial deposition to have a deposited cladding/core ratio (D/d) that is less than 7.5. The core rod is dehydrated in a chlorine- or fluorine-containing atmosphere at about 1200 DEG C to reduce the amount of OH present to less than 0.8 parts per billion by weight, and then consolidated in a helium atmosphere at about 1500 DEG C to convert the porous soot body into a glass. The consolidated core rod is elongated using an oxygen-hydrogen torch that creates a layer of OH ions on the surface of the rod that are largely removed by plasma etching. Finally, the core rod is installed in a glass tube Ä40Ü having a suitably low OH content. Thereafter, the tube is collapsed onto the rod to create a preform Ä60Ü. Conventional methods are employed for drawing an optical fiber from the preform and applying one or more protective coatings Ä75, 76Ü. The disclosed method is suitable for commercial production of low-OH fiber. Significantly, the fiber's loss at 1385 nm is reduced to a level that is less than its loss at 1310 nm, thereby rendering the entire wavelength region 1200 - 1600 nm suitable for optical transmission. In particular, wave-division-multiplex systems are now available to transmit optical signals over distances greater than 10 km in the wavelength region between 1360 nm and 1430 nm.
-
公开(公告)号:CA2260478A1
公开(公告)日:1999-08-18
申请号:CA2260478
申请日:1999-01-26
Applicant: LUCENT TECHNOLOGIES INC
Inventor: PECKHAM DAVID WAYNE , REED WILLIAM ALFRED , KUMMER RAYMOND BRADFIELD , KALISH DAVID , JUDY ARTHUR F
Abstract: Simultaneous dense WDM operation in both the 1310 nm and 1550 nm transparency windows of silica-based optical fiber, is enabled by a fiber design providing for nulled dispersion within a critically positioned wavelength range. Design provides for values of dispersion in both windows sufficiently low for desired per-channel bit rate, and, at the same time, sufficiently high to maintain effects of non-linear dispersion within tolerable limits for WDM operation. Fiber fabrication and system design are described.
-
公开(公告)号:CA2240220C
公开(公告)日:2003-04-29
申请号:CA2240220
申请日:1998-06-10
Applicant: LUCENT TECHNOLOGIES INC
Inventor: CHANG KAI HUEI , MILLER THOMAS JOHN , KALISH DAVID , PEARSALL MICHAEL L
IPC: G02B6/00 , C03B37/012 , C03B37/014 , C03C25/10 , C03C25/12 , G02B6/02 , G02B6/036 , G02B6/16 , H04J14/02 , C03B23/047 , C03B23/057
Abstract: A singlemode optical fiber [700] having very low loss at 1385 nm, and a practical method for making same are disclosed. A core rod [20] is fabricate d using vapor axial deposition to have a deposited cladding/core ratio (D/d) that is less than 7.5. The core rod is dehydrated in a chlorine- or fluorine-containing atmosp here at about 1200.degree.C to reduce the amount of OH present to less than 0.8 part s per billion by weight, and then consolidated in a helium atmosphere at about 1500.degree.C to convert the porous soot body into a glass. The consolidated core rod is elongated using an oxygen-hydrogen torch that creates a layer of OH ions on the surface of the rod that are largely removed by plasma etching. Finally, the core rod is installed in a glass tube [40] having a suitably low OH content. Thereafter, the tube is collapse d onto the rod to create a preform [60]. Conventional methods are employed for drawing an optical fiber from the preform and applying one or more protective coatings [75, 76]. The disclosed method is suitable for commercial production of low-OH fiber. Significantly, the fiber's loss at 1385 nm is reduced to a level that is les s than its loss at 1310 nm, thereby rendering the entire wavelength region 1200 - 1600 nm su itable for optical transmission. In particular, wave-division-multiplexsystems are nowavailable to transmit optical signals over distances greater than 10 km in the wavelength region between 1360 nm and 1430 nm.
-
公开(公告)号:DE69900958T2
公开(公告)日:2002-11-21
申请号:DE69900958
申请日:1999-07-06
Applicant: LUCENT TECHNOLOGIES INC
Inventor: GLODIS PAUL FRANCIS , GRIDLEY CHARLES FRANCIS , JABLONOWSKI DONALD PAUL , KALISH DAVID , WALKER KENNETH LEE
IPC: C03C3/04 , C03B37/012 , C03B37/018
Abstract: A large optical preform Ä303Ü is made by a modified chemical vapor deposition (MCVD) process by depositing successive layers of core and cladding materials onto the inside surface of a rotating glass tube Ä33Ü having a hydroxyl ion (OH ) level that is less than 0.5 parts per million (ppm) by weight. The tube is then collapsed inwardly to form a core rod Ä301Ü in which the deposited core material Ä31Ü has a diameter that is greater than about 5 millimeters and the deposited cladding material Ä32Ü has an outside diameter that is less than about 15 millimeters. Optionally a machine-vision system Ä140,150,160Ü monitors and controls the diameter of the glass tube by regulating the pressure within the tube; moreover, the machine-vision system monitors and controls the straightness of the tube by varying its rotational speed according to angular position. After the core rod Ä301Ü is formed, it may be plasma etched to remove contaminants, it is overclad with two glass jackets Ä34,35Ü having a hydroxyl ion (OH ) level that is less than 1.0 ppm by weight thereby creating a large preform Ä303Ü from which about 400 kilometers of singlemode optical fiber can be drawn per meter of length of preform.
-
-
-
-
-
-
-
-
-