PRODUCTION OF OPTICAL FIBER
    1.
    发明专利

    公开(公告)号:JPH11147732A

    公开(公告)日:1999-06-02

    申请号:JP23675498

    申请日:1998-08-24

    Abstract: PROBLEM TO BE SOLVED: To provide a process for drawing out a fiber from a preform having a large diameter, especially a process parameter capable of mass producing a high-quality fiber of low loss from a preform in producing an optical fiber from a perform having a large diameter. SOLUTION: A velocity passing through a neck down zone in drawing out a fiber from a glass of MCVD(modified chemical vapor deposition) preform is discovered to have a great influence on a prepared fiber. A relatively low loss which can not be obtained at a low velocity is obtained at >= about 20 g/minute velocity. A velocity at which a glass passes through a neck down zone is a velocity at which a preform glass passes through a plane which crosses the neck down zone and is orientated vertically to the longer axis of the preform and flows. A fiber having

    2.
    发明专利
    未知

    公开(公告)号:DE69900958D1

    公开(公告)日:2002-04-11

    申请号:DE69900958

    申请日:1999-07-06

    Abstract: A large optical preform Ä303Ü is made by a modified chemical vapor deposition (MCVD) process by depositing successive layers of core and cladding materials onto the inside surface of a rotating glass tube Ä33Ü having a hydroxyl ion (OH ) level that is less than 0.5 parts per million (ppm) by weight. The tube is then collapsed inwardly to form a core rod Ä301Ü in which the deposited core material Ä31Ü has a diameter that is greater than about 5 millimeters and the deposited cladding material Ä32Ü has an outside diameter that is less than about 15 millimeters. Optionally a machine-vision system Ä140,150,160Ü monitors and controls the diameter of the glass tube by regulating the pressure within the tube; moreover, the machine-vision system monitors and controls the straightness of the tube by varying its rotational speed according to angular position. After the core rod Ä301Ü is formed, it may be plasma etched to remove contaminants, it is overclad with two glass jackets Ä34,35Ü having a hydroxyl ion (OH ) level that is less than 1.0 ppm by weight thereby creating a large preform Ä303Ü from which about 400 kilometers of singlemode optical fiber can be drawn per meter of length of preform.

    3.
    发明专利
    未知

    公开(公告)号:AT214037T

    公开(公告)日:2002-03-15

    申请号:AT99305360

    申请日:1999-07-06

    Abstract: A large optical preform Ä303Ü is made by a modified chemical vapor deposition (MCVD) process by depositing successive layers of core and cladding materials onto the inside surface of a rotating glass tube Ä33Ü having a hydroxyl ion (OH ) level that is less than 0.5 parts per million (ppm) by weight. The tube is then collapsed inwardly to form a core rod Ä301Ü in which the deposited core material Ä31Ü has a diameter that is greater than about 5 millimeters and the deposited cladding material Ä32Ü has an outside diameter that is less than about 15 millimeters. Optionally a machine-vision system Ä140,150,160Ü monitors and controls the diameter of the glass tube by regulating the pressure within the tube; moreover, the machine-vision system monitors and controls the straightness of the tube by varying its rotational speed according to angular position. After the core rod Ä301Ü is formed, it may be plasma etched to remove contaminants, it is overclad with two glass jackets Ä34,35Ü having a hydroxyl ion (OH ) level that is less than 1.0 ppm by weight thereby creating a large preform Ä303Ü from which about 400 kilometers of singlemode optical fiber can be drawn per meter of length of preform.

    4.
    发明专利
    未知

    公开(公告)号:BR9902718A

    公开(公告)日:2000-03-21

    申请号:BR9902718

    申请日:1999-07-12

    Abstract: A large optical preform Ä303Ü is made by a modified chemical vapor deposition (MCVD) process by depositing successive layers of core and cladding materials onto the inside surface of a rotating glass tube Ä33Ü having a hydroxyl ion (OH ) level that is less than 0.5 parts per million (ppm) by weight. The tube is then collapsed inwardly to form a core rod Ä301Ü in which the deposited core material Ä31Ü has a diameter that is greater than about 5 millimeters and the deposited cladding material Ä32Ü has an outside diameter that is less than about 15 millimeters. Optionally a machine-vision system Ä140,150,160Ü monitors and controls the diameter of the glass tube by regulating the pressure within the tube; moreover, the machine-vision system monitors and controls the straightness of the tube by varying its rotational speed according to angular position. After the core rod Ä301Ü is formed, it may be plasma etched to remove contaminants, it is overclad with two glass jackets Ä34,35Ü having a hydroxyl ion (OH ) level that is less than 1.0 ppm by weight thereby creating a large preform Ä303Ü from which about 400 kilometers of singlemode optical fiber can be drawn per meter of length of preform.

    5.
    发明专利
    未知

    公开(公告)号:DE69900958T2

    公开(公告)日:2002-11-21

    申请号:DE69900958

    申请日:1999-07-06

    Abstract: A large optical preform Ä303Ü is made by a modified chemical vapor deposition (MCVD) process by depositing successive layers of core and cladding materials onto the inside surface of a rotating glass tube Ä33Ü having a hydroxyl ion (OH ) level that is less than 0.5 parts per million (ppm) by weight. The tube is then collapsed inwardly to form a core rod Ä301Ü in which the deposited core material Ä31Ü has a diameter that is greater than about 5 millimeters and the deposited cladding material Ä32Ü has an outside diameter that is less than about 15 millimeters. Optionally a machine-vision system Ä140,150,160Ü monitors and controls the diameter of the glass tube by regulating the pressure within the tube; moreover, the machine-vision system monitors and controls the straightness of the tube by varying its rotational speed according to angular position. After the core rod Ä301Ü is formed, it may be plasma etched to remove contaminants, it is overclad with two glass jackets Ä34,35Ü having a hydroxyl ion (OH ) level that is less than 1.0 ppm by weight thereby creating a large preform Ä303Ü from which about 400 kilometers of singlemode optical fiber can be drawn per meter of length of preform.

Patent Agency Ranking