Abstract:
A back haul architecture enables efficient primary transfer (i.e., transfer of the designation of primary base station from one base station to another). A frame selection/distribution (FSD) function queues packets of forward-link data -- to which sequence numbers have been assigned --for packet-mode transmission over the back haul only to one base station -- the current primary base station -- where the packets are again queued for over-the-air transmission to the mobile unit. If and when it becomes appropriate to transfer the designation of primary base station to another base station, there may still be packets of data queued at the old primary base station awaiting transmission to the mobile unit. The old primary base station sends a message to the new primary base station indicating a particular sequence number that identifies the remaining packets of forward-link data queued at the old primary base station. The new primary base station then sends a message to the FSD function requesting transmission of those packets of forward-link data corresponding to the particular sequence number. The FSD function then transmits those requested packets of forward-link data to the new primary base station, which queues the requested packets for over-the-air transmission to the mobile unit. In this way, transmission of all of the forward-link data to the mobile unit is enabled without having to transmit the remaining queued packets of forward-link data from the old primary base station to the new primary base station over the back haul, thereby providing an efficient mechanism for primary transfer in wireless communications systems that support forward-link data transmissions only in simplex mode.
Abstract:
A variable length sequence number is used to identify data units in a communication channel. The sequence number associated with the most recent data that has been received successfully and the sequence number expected with the next new data message to be received are examined to determine the minimum size sequence number necessary to unambiguously identify to the transmitter incorrectly received data that must be retransmitted in a later message. The receiver provides the transmitter with the sequence number associated with the last successfully received byte of data and the sequence number associated with the next expected byte of data. The receiver communicates this information to the transmitter using a NAK control message. The transmitter then uses the sequence number of the next byte of data to be transmitted and the information received in the control message from the receiver to determine the smallest number of bits necessary to represent the sequence numbers for both data transmissions and the retransmission of data that was not received properly by the receiver.
Abstract:
The present invention increases the success rate of soft handoffs by enhancing the ability of a mobile-telephone to receive a handoff direction message that identifies the traffic channel being assigned to enable a candidate base station to communicate with the mobile-telephone. Specifically, the aforementioned ability of the mobile-telephone is enhanced by using the candidate base station to transmit the handoff direction message on a communication channel belonging to the candidate base station and being listened to by the mobile-telephone. In situations where signals transmitted from active set base stations have a low signal-to-noise ratio at the mobile-telephone, signals transmitted from the candidate base station may have a higher signal-to-noise ratio at the mobile-telephone. In these situations, the transmission of the HD messages from the candidate base station increases the likelihood that a copy of the handoff direction message will be successfully received by the mobile-telephone, thereby enhancing the success rate of soft handoffs.
Abstract:
A technique for controlling the power with which a wireless terminal transmits is disclosed. One embodiment of the present invention comprises: transmitting a first signal at a first power level; receiving a series of n power control signals, b i-n+1 through b i ; setting a step size based on a measure of dispersion of the n power control signals; and transmitting a second signal at a second power level that is based on the first power level and the step size.
Abstract:
A variable length sequence number is used to identify data units in a communication channel. The sequence number associated with the most recent data that has been received successfully and the sequence number expected with the next new data message to be received are examined to determine the minimum size sequence number necessary to unambiguously identify to the transmitter incorrectly received data that must be retransmitted in a later message. The receiver provides the transmitter with the sequence number associated with the last successfully received byte of data and the sequence number associated with the next expected byte of data. The receiver communicates this information to the transmitter using a NAK control message. The transmitter then uses the sequence number of the next byte of data to be transmitted and the information received in the control message from the receiver to determine the smallest number of bits necessary to represent the sequence numbers for both data transmissions and the retransmission of data that was not received properly by the receiver.
Abstract:
In a wireless communications system, a base station transmits power control signals (e.g., the power control bits of a power control sub-channel) to a mobile using a forward-link channel that is decoupled from all other signals transmitted from that base station to that mobile. For example, the decoupled forward-link channel may be a common power control channel. The mobile then uses the power control signals received in the decoupled forward-link channel to control its power level for transmitting one or more reverse-link channels to the base station. The ability of base stations to use decoupled forward-link channels in order to transmit their power control signals to a mobile enables a mobile to operate with different active sets for the forward and reverse links. This enables forward-link data traffic to be implemented using a simplex mode, even when the mobile is operating in soft handoff in the reverse link. This in turn greatly reduces the reactivation time involved in transitioning a mobile from the suspended state to the active state, which is particularly desirable for bursty (i.e., intermittent) packet data flow, as opposed to continuous circuit-oriented voice messaging.
Abstract:
A method for improving the throughput of a communication system by decreasing the amount of time it takes to retransmit information determined to have been erroneous. Information received by an equipment is decoded and subjected to error detection techniques. The equipment performs a data puncture operation on the received information it is currently transmitting to request a retransmission of such received information.
Abstract:
Bursts of additional bandwidth (e.g., one or more supplemental channels or a channel having variable bandwidth) is assigned to users (e.g., high-speed data users) in a cellular telecommunication system. A request for assignment of additional bandwidth may be an initial request, a continuation request for an on-going burst, or a retry requests after a previously rejected request. In any case, it is determined whether to grant or reject the request. If the request is rejected, instructions are given to submit a retry request after a specified back-off time. The present invention may be implemented using either an asynchronous approach or a synchronous approach. According to the asynchronous approach, all requests are handled asynchronously. According to the synchronous approach, initial requests are handled asynchronously, but continuation requests and retry requests are handled synchronously at epoch times that coincide with specific time slots.