Abstract:
The present invention is an intelligent optical transmitter module that is used to produce optical test signals. The optical transmitter module contains a solid state laser and a microprocessor. The solid state laser produces the test signals which are used to test optical fibers in an optical fiber network. The laser is both monitored by and controlled by the microprocessor. In one embodiment, backface monitoring and optical output coupling power monitoring (using an optical tap) are accomplished within the module in order to more accurately reflect the state of the laser. The microprocessor reads data regarding the performance of the solid state laser which may be output to another control device. The control device utilizes the data from the microprocessor in the analysis of fiber optic loop conditions as well as the laser itself. The microprocessor enables the output levels of the solid state laser to be adjustable by way of a digital to analog converter. The test signal which is output from the module may additionally be pulsed or continuous.
Abstract:
The present invention is an optical monitoring and test access interconnection module especially adapted for use with a fiber optic distribution frame for a fiber optic communications system. The interconnection module provides a combination of monitoring and test access for two fiber lines, typically a transmit/receive pair, where wavelength division multiplexer (WDM) test access is provided to both the transmit and receive fibers. In one embodiment of the present invention, the interconnection module monitors only the receive fiber line where a power monitoring circuit receives a monitor level optical signal via an optical tap and converts the optical signal to an electrical output. Processing electronics and firmware within the module are operable to generate alarms and other control signals when changes in the power level of the received signal are detected. A test access path is provided on the module for use, for example, with an optical time domain reflectometer (OTDR). In one embodiment of the present invention, the interconnection module incorporates a unique physical design arrangement that separates the optical signal processing from the electronic processing into partitioned sub-modules. The optical and electronic sub-modules may advantageously be assembled (and dis-assembled) by means of guides that allow the module halves to slide together. A unique optical mating connector is provided in the sliding arrangement to join the optical module to an opto-electronic photodetector in the electronic module.
Abstract:
The present invention is an intelligent optical transmitter module that is used to produce optical test signals. The optical transmitter module contains a solid state laser and a microprocessor. The solid state laser produces the test signals which are used to test optical fibers in an optical fiber network. The laser is both monitored by and controlled by the microprocessor. In one embodiment, backface monitoring and optical output coupling power monitoring (using an optical tap) are accomplished within the module in order to more accurately reflect the state of the laser. The microprocessor reads data regarding the performance of the solid state laser which may be output to another control device. The control device utilizes the data from the microprocessor in the analysis of fiber optic loop conditions as well as the laser itself. The microprocessor enables the output levels of the solid state laser to be adjustable by way of a digital to analog converter. The test signal which is output from the module may additionally be pulsed or continuous.
Abstract:
An optical switch device for switching test signals to the terminated ends of a predetermined number of optical fibers in an optical fiber cable. The optical switch device contains a first optical port for receiving the test signals. A plurality of optical second ports are provided, wherein the number of second optical ports is less than the number of optical fibers in the cable to be tested. The optical connector ports are connected to the terminated ends of optical fibers in the optical cable by a plurality of detachable adapters. Each of the adapters has a base connector that selectively engages one of the second optical ports on the optical switch device. A plurality of optical leads extends from the base connector of the adaptor. The optical leads terminate with a plurality of plugs that are adapted to selectively engage some of the terminated ends of the optical fibers in the optical cable. The plugs at one end of the adapters are first connected to the optical fibers in the optical cable. The base connectors coupled to the plugs are fewer in number than optical fibers by a ratio of at least 1:2. The base connectors are then connected to the optical switch, thereby allowing for a connection operation that is more time efficient and space efficient than was previously available.
Abstract:
A monitor module that is used to detect optical test signals traveling through optical fibers in an optical fiber network. The monitor module is sized to be received within the monitor shelf of a fiber administration system. The monitor module contains an optical detector that detects an incoming optical signal and converts that signal into a corresponding electronic signal. The electronic signal is then amplified, linearized and read by a microprocessor. The signal is then forwarded to an external shelf controller, wherein the signal is used to determine the optical performance of the optical fibers that are connected to the monitor module.
Abstract:
The present invention provides a system and method for monitoring and characterizing optical links of a communication system by transmitting and receiving optical test signals of a certain wavelength through the optical links where such test signals do not interfere in a significant manner with other optical signals being conveyed through the optical links.
Abstract:
A fiber distribution shelf containing an optical switch within the confines of the shelf structure. The fiber distribution shelf is part of an optical fiber administration system where various stages of switching are used to interconnect an optical time domain reflectometer to the optical fibers that terminate on a fiber distribution shelf within a fiber administration system. By having the shelf optical switch entirely contained within the shelf structure of a fiber distribution shelf, a unique configuration is provided that greatly reduces the size and complexity of the overall fiber administration system.
Abstract:
An electrical backplane assembly for interconnecting a plurality of connection modules in a fiber distribution shelf to the central controller of an optical fiber administration system. The electrical backplane assembly mounts upon a bracket assembly within the confines of the shelf structure of the fiber distribution shelf. The bracket assembly retains the electrical backplane assembly in a small previously unused area of space in between the tops of the connection modules and the interior top panel of the fiber distribution shelf. By having the electrical backplane assembly entirely contained within the shelf structure of a fiber distribution shelf, a unique configuration is provided that greatly reduces the size and complexity of the overall fiber administration system.
Abstract:
Disclosed is a fiber optic operations center intended for use in a central office which is responsible for the administration, monitoring, testing, and repair of a multiplicity of fiber optic cables entering the central office from subscribers. The operations center is housed in a bay which is arranged to protect fiber optic cables and route then to an optical switch which connects one or more selected cables to a test device which launches and receives optical signals. The test device is under the control of a system controller which has a variety of input and output means which enable craftpersons in the central office and in remote locations to access the operations center.