Abstract:
To determine spectra, integrated multiple illuminant measurements from a non-fully illuminant populated color sensor may be converted into a fully populated spectral curve using a reference database. The reference database is partitioned into a plurality of clusters, and an appropriate centroid is determined for each cluster by, for example, vector quantization. Training samples that form the reference database may be assigned to the clusters by comparing the Euclidean distance between the centroids and the sample under consideration, and assigning each sample to the cluster having the centroid with the shortest Euclidean distance. When all training samples have been assigned, the resulting structure is stored as the reference database. When reconstructing the spectra for new measurements from the sensor, the Euclidean distances between actual color samples under measurement and each cluster centroid are measured. The spectra are then reconstructed using only the training samples from the cluster corresponding to the shortest Euclidean distance, resulting in improved speed and accuracy.
Abstract:
An apparatus may include an illuminator, a controller, a display panel, a modulator, and a plurality of Fabry-Perot cavities. The plurality of Fabry-Perot cavities generated an image from light provided by the illuminator, each pixel of the image corresponding to a respective one of the plurality of Fabry-Perot cavities. The controller controls the modulator to provide image modulation data to the plurality of Fabry-Perot cavities for generating the image, the modulator providing color information to a first cavity of the plurality of Fabry-Perot cavities for setting a size of the first cavity to correspond to a color of a first pixel of the image, the modulator providing gray level information to the first cavity for time-division multiplexing to correspond to a gray level of the first pixel. The display panel display pixels of the generated image based on colors and gray levels of each pixel of the generated image.
Abstract:
To determine the spectra of objects that have different degrees of fluorescence, a plurality of reference databases are provided, each reference database being suited to a different degree of fluorescence. A most appropriate one of the reference databases is selected based on a predicted degree of fluorescence of an object for which a reflectance spectrum is to be determined. The prediction of the degree of fluorescence may be based on user input, or may be predicted by using a priori information, such as a priori knowledge of media types.
Abstract:
A full width array spectrophotometer for full width scanning color analysis of color test targets, with one or two substantially linear elongated arrays of closely spaced multiple LED illumination sources of plural different color emissions in a multiply repeated pattern of at least three or four different colors transversely spanning a printer paper path and sequentially illuminated to illuminate a transverse band across a printed sheet moving in the paper path, and a corresponding elongated low cost light imaging bar comprising a parallel and correspondingly elongated array of multiple closely spaced different color sensitive (three or four rows of color-filtered) photodetectors, which imaging bar is positioned to detect and analyze light reflected from the transverse sequentially illuminated band.
Abstract:
A optical apparatus may include a plurality of Fabry-Perot cavities and a controller. The plurality of Fabry-Perot cavities receives an incoming image. The controller controls a group of adjacent Fabry-Perot cavities of the plurality of Fabry-Perot cavities to sample spectral information from a pixel of the incoming image. The group may be designated to the pixel. Sizes of the cavities within the group may differ from one another. The sizes of the cavities within the group may be fixed during the spectral information synthesis operation.
Abstract:
A spectral filter includes a two-dimensional array of Fabry-Perot cavity structures, a controller, and a sampling circuit used to switch the Fabry-Perot cavity. The filter receives an incoming image, the sampling circuit switches the cavity to generate a filter image, and the filtered image is detected by the photodetectors to convert a filtered image into digital data. The controller coordinates all the image captures functions of the spectral filter.
Abstract:
Disclosed are a system and method are directed to efficient image based color calibration and improving color consistency performance, and more particularly to the use of continuous or dynamic calibration performed during printing and enabling adjustment on a page by page basis.
Abstract:
Multiple input patches are received on an output media, which patches are characterized by print density representing a document processing system's response to different input grayscale values over a potential response space. Values associated with the print density of each input grayscale value are measured. Reference Engine Response Curves are determined from the measured print density values and input gray scale values. A variance data representative of a difference between each measured print density value and a respective reference Engine Response Curve is determined. The variance data is transformed into individual components. Based at least on one selected individual component, a set of calibration compensating Tone Reproduction Curves is determined. The determined calibration compensating Tone Reproduction Curves are applied to input grayscale values.
Abstract:
An automatic gray balance control system to produce TRCs for all primary colors in a reproduction device and for each pitch of a photoreceptor system by printing target patches for each pitch, measuring the output colors, and automatically readjusting the tone reproduction curves until a satisfactory level of accuracy is obtained as compared to the theoretical desired output. The system produces pitch-based gray balanced TRCs that are updated frequently for each pitch, with different TRCs for different pitches, to ensure consistency in output from pitch to pitch as well as from page to page on a given pitch.
Abstract:
Identifying the substrate type of a target substrate before patterning by a marking engine produces an opportunity to adjust the marking engine. The adjustments can enable the marking engine to produce higher quality work. The target substrate's substrate type can be automatically identified by obtaining its characteristics and submitting them to a classifier. A spectrophotometer can measure a substrates reflectance spectrum, which is a good characteristic for use in classifying. Classifiers can be based on known distance or correlation measures.