Abstract:
A method for making electrical connection to a mirror reflective element for a vehicular rearview mirror assembly includes providing a mirror reflective element having a front substrate and a rear substrate with an electro-optic medium disposed therebetween and in contact with a transparent conductive coating and a third surface reflector. A metallic electrical connector is provided that includes an attachment portion and a wire receiving portion. An electrical wire is inserted in the wire receiving portion such that at least one tang of the wire receiving portion engages the electrical wire to secure the electrical wire in the wire receiving portion and to make electrically-conductive connection with the electrical wire. The attachment portion is attached at the front or rear substrate to attach the electrical connector at the mirror reflective element such that the attachment portion electrically conductively connects to the transparent conductive coating or the third surface reflector.
Abstract:
A reflective element assembly for a vehicular rearview mirror assembly includes front and rear substrates with an electro-optic medium disposed therebetween. An electrical connector has an attachment portion and a wire receiving portion for receiving an electrical wire therein. A flange of the attachment portion is configured to be disposed at a fourth surface of the rear substrate and a tab is configured to extend at least partially across a perimeter edge of the rear substrate. An electrically conductive material is disposed in an uncured state and uncured electrically conductive material flows at least partially through the aperture and is cured to secure the electrical connector at the rear substrate. The wire receiving portion of the electrical connector is configured to receive the electrical wire therein and includes at least one tang that engages the electrical wire when the electrical wire is inserted into the wire receiving portion.
Abstract:
A vehicular driver monitoring system includes a driver monitoring camera disposed at an interior rearview mirror assembly of a vehicle. The driver monitoring camera views a driver of the vehicle when the driver is driving the vehicle. The driver monitoring camera captures image data. An image processor is operable to process image data captured by the driver monitoring camera. The vehicular driver monitoring system determines driver performance based at least in part on (i) image processing by the image processor of image data captured by the driver monitoring camera, (ii) a vehicle characteristic and (iii) a condition exterior of the equipped vehicle. The vehicle characteristic includes at least one selected from the group consisting of (a) vehicle speed, (b) vehicle acceleration and (c) vehicle orientation.
Abstract:
A vehicular interior rearview mirror assembly includes a mirror head having an interior mirror reflective element. The mirror reflective element has a mirror transflector that transmits near-IR light incident thereon, transmits visible light incident thereon and reflects visible light incident thereon. The mirror assembly includes a camera disposed within the mirror head and viewing through the mirror transflector. The camera includes an imaging sensor having a quantum efficiency (QE) of at least 15% for near-infrared (near-IR) light having a wavelength of 940 nm. The mirror assembly further includes first, second and third near-IR illumination sources disposed within the mirror head and operable to emit near-IR light that passes through the mirror transflector. The near-IR illumination sources are at respective angles relative to a planar front surface of the mirror reflective element and, when powered, illuminate respective in-cabin regions for a driver monitoring function or an occupant detection function.
Abstract:
A reflective element assembly for a vehicular rearview mirror assembly includes front and rear substrates with an electro-optic medium disposed therebetween. An electrical connector has an attachment portion and a wire receiving portion for receiving an electrical wire therein. A flange of the attachment portion is configured to be disposed at a fourth surface of the rear substrate and a tab is configured to extend at least partially across a perimeter edge of the rear substrate. An electrically conductive material is disposed in an uncured state and uncured electrically conductive material flows at least partially through the aperture and is cured to secure the electrical connector at the rear substrate. The wire receiving portion of the electrical connector is configured to receive the electrical wire therein and includes at least one tang that engages the electrical wire when the electrical wire is inserted into the wire receiving portion.
Abstract:
A method of coating a rear glass substrate for an electrochromic reflective element includes providing a fixture having a recess and a masking element extending from a perimeter region of the recess over a portion of the recess. The masking element includes a disc portion and an arm portion extending between the disc portion and the perimeter region of the recess of the fixture. A rear glass substrate is positioned in the recess and the masking element extends over and is spaced from the surface of the glass substrate. The glass substrate surface is coated with a mirror reflector coating. The masking element is shaped such that the mirror reflector coating is deposited at the surface behind the arm portion but is substantially not deposited behind the disc portion so as to establish a window region through the mirror reflector coating at the glass substrate surface.
Abstract:
A reflective element assembly for a vehicular rearview mirror assembly includes front and rear substrates with an electro-optic medium disposed therebetween. An electrical connector has an attachment portion and a wire receiving portion for receiving an electrical wire therein. A flange of the attachment portion is configured to be disposed at a fourth surface of the rear substrate and a tab is configured to extend at least partially across a perimeter edge of the rear substrate. An electrically conductive material is disposed in an uncured state and uncured electrically conductive material flows at least partially through the aperture and is cured to secure the electrical connector at the rear substrate. The wire receiving portion of the electrical connector is configured to receive the electrical wire therein and includes at least one tang that engages the electrical wire when the electrical wire is inserted into the wire receiving portion.
Abstract:
A vehicular interior rearview mirror assembly includes a mirror head having an interior mirror reflective element. The mirror reflective element has a mirror transflector that transmits near-IR light incident thereon, transmits visible light incident thereon and reflects visible light incident thereon. The mirror assembly includes a camera disposed within the mirror head and viewing through the mirror transflector. The camera includes an imaging sensor having a quantum efficiency (QE) of at least 15% for near-infrared (near-IR) light having a wavelength of 940 nm. The mirror assembly further includes first, second and third near-IR illumination sources disposed within the mirror head and operable to emit near-IR light that passes through the mirror transflector. The near-IR illumination sources are at respective angles relative to a planar front surface of the mirror reflective element and, when powered, illuminate respective in-cabin regions for a driver monitoring function or an occupant detection function.
Abstract:
An electrochromic mirror reflective element for a vehicular rearview mirror assembly includes front and rear glass substrates with an electrochromic medium disposed therebetween and with a fourth surface reflector coated at the fourth surface of the rear substrate. Light incident at the first surface of the front substrate passes (i) through the front substrate, (ii) through a transparent electrically conductive coating at the second surface of the front substrate and (iii) through the electrochromic medium, whereby light passing through the electrochromic medium is partially reflected at a third surface reflector and is partially transmitted through the third surface reflector, and wherein light passing through the electrochromic medium that is partially transmitted through the third surface reflector passes through the rear substrate and is at least partially reflected off the fourth surface reflector at the fourth surface of the rear substrate to provide enhanced reflectivity of said electrochromic mirror reflective element.
Abstract:
A reflective element assembly for a vehicular rearview mirror assembly includes front and rear substrates with an electro-optic medium disposed therebetween. An electrical connector has an attachment portion and a wire receiving portion for receiving an electrical wire therein. A flange of the attachment portion is configured to be disposed at a fourth surface of the rear substrate and a tab is configured to extend at least partially across a perimeter edge of the rear substrate. An electrically conductive material is disposed in an uncured state and uncured electrically conductive material flows at least partially through the aperture and is cured to secure the electrical connector at the rear substrate. The wire receiving portion of the electrical connector is configured to receive the electrical wire therein and includes at least one tang that engages the electrical wire when the electrical wire is inserted into the wire receiving portion.