Abstract:
Se proporciona manejo de división para un sistema de almacenamiento escalable, estructurado. El sistema de almacenamiento proporciona almacenamiento representado por una o más tablas, cada una de las cuales incluye filas que representan entidades de datos. Una tabla se divide en un número divisiones, cada división incluyendo una variedad de filas contiguas. Las divisiones son servidas por servidores de tabla y se manejan por un maestro de tabla. La información de distribución de carga para los servidores de tabla y divisiones se rastrea, y el maestro de tabla determina dividir y/o fusionar divisiones basándose en la información de distribución de carga.
Abstract:
Atomic multiple modifications of streams is provided. Streams are selected for the application of an atomic multiple modification. A lock is acquired on the meta-data associated with the streams. Each stream is de-coupled from its name. Multiple modifications are applied to the selected streams. After performing the modifications, names are coupled to the streams. The lock on the meta-data associated with each stream is released.
Abstract:
Partition management for a scalable, structured storage system is provided. The storage system provides storage represented by one or more tables, each of which includes rows that represent data entities. A table is partitioned into a number of partitions, each partition including a contiguous range of rows. The partitions are served by table servers and managed by a table master. Load distribution information for the table servers and partitions is tracked, and the table master determines to split and/or merge partitions based on the load distribution information.
Abstract:
Embodiments of the present invention relate to synchronously replicating data in a distributed computing environment. To achieve synchronous replication both an eventual consistency approach and a strong consistency approach are contemplated. Received data may be written to a log of a primary data store for eventual committal. The data may then be annotated with a record, such as a unique identifier, which facilitates the replay of the data at a secondary data store. Upon receiving an acknowledgment that the secondary data store has written the data to a log, the primary data store may commit the data and communicate an acknowledgment of success back to the client. In a strong consistency approach, the primary data store may wait to send an acknowledgement of success to the client until it receives an acknowledgment that the secondary has not only written, but also committed, the data.
Abstract:
Cloud computing platforms having computer-readable media that perform methods for facilitating communications with storage. A request having a first-interface format to access storage is intercepted. The first interface format of the request supports access to a virtual hard drive (VHD). The request is translated to a blob request having a blob interface format. The blob interface format of the blob request supports access to a plurality of blobs of data in a blob store. The blob request is communicated to a blob interface such that the blob request is executed in managing the plurality of blobs.
Abstract:
Atomic multiple modifications of streams is provided. Streams are selected for the application of an atomic multiple modification. A lock is acquired on the meta-data associated with the streams. Each stream is de-coupled from its name. Multiple modifications are applied to the selected streams. After performing the modifications, names are coupled to the streams. The lock on the meta-data associated with each stream is released.