Abstract:
Embodiments of the present invention relate to asynchronously replicating data in a distributed computing environment. To achieve asynchronous replication, data received at a primary data store may be annotated with information, such as an identifier of the data. The annotated data may then be communicated to a secondary data store, which may then write the data and annotated information to one or more logs for eventual replay and committal at the secondary data store. The primary data store may communicate an acknowledgment of success in committing the data at the primary data store as well as of success in writing the data to the secondary data store. Additional embodiments may include committing the data at the secondary data store in response to receiving an instruction that authorizes committal of data through a identifier.
Abstract:
Embodiments of the present invention relate to synchronously replicating data in a distributed computing environment. To achieve synchronous replication both an eventual consistency approach and a strong consistency approach are contemplated. Received data may be written to a log of a primary data store for eventual committal. The data may then be annotated with a record, such as a unique identifier, which facilitates the replay of the data at a secondary data store. Upon receiving an acknowledgment that the secondary data store has written the data to a log, the primary data store may commit the data and communicate an acknowledgment of success back to the client. In a strong consistency approach, the primary data store may wait to send an acknowledgement of success to the client until it receives an acknowledgment that the secondary has not only written, but also committed, the data.
Abstract:
Embodiments of the present invention relate to synchronously replicating data in a distributed computing environment. To achieve synchronous replication both an eventual consistency approach and a strong consistency approach are contemplated. Received data may be written to a log of a primary data store for eventual committal. The data may then be annotated with a record, such as a unique identifier, which facilitates the replay of the data at a secondary data store. Upon receiving an acknowledgment that the secondary data store has written the data to a log, the primary data store may commit the data and communicate an acknowledgment of success back to the client. In a strong consistency approach, the primary data store may wait to send an acknowledgement of success to the client until it receives an acknowledgment that the secondary has not only written, but also committed, the data.