Abstract:
A system (200) includes a battery charger (278) and a battery (202). The battery (202) includes a thermistor (230), a voltage identifying element (240), a switch (244), a memory device (232), and a battery data contact (228), connected to a data port of the memory device (232) and the voltage identifying element (240). The voltage identifying element (240) determines a voltage that controls the switch (244). When the switch (244) is enabled, the thermistor (230), connected to a battery clock contact (224), is active and a microprocessor (102) on the battery charger (278) reads the value of the thermistor (230) via an analog-to-digital converter. When the switch (244) is disabled, the thermistor (230) is switched out and the battery clock contact (224) is used to clock the memory device (232). The battery charger (278) has a data contact (226) for receiving the battery data contact (228) and a clock contact (222) for receiving the battery clock contact (224). The battery charger (278) further includes at least two switches (204,206), and the microprocessor (102) is programmed to selectively operate the switches (204,206).
Abstract:
A charging system (100) for charging electronic devices. The charging system (100) includes a power distributor (110) and a power receiver (112) in which the power distributor (110) transfers power to the power receiver (112) when the power receiver (112) engages the power distributor (110). The power receiver (112) induces a charging current in an article that is supported by the power receiver (112). The power receiver (112) can include an inductor plate (146) having a first charging coil (148), and the article can be a garment (156) having an embedded electronic device (158). The garment (156) can include a second charging coil (162), and the first charging coil (148) can induce the charging current in the second charging coil (162).
Abstract:
A method ( 100 ) and system ( 10 ) for controlling ad-hoc membership in wireless networks to improve battery life includes determining ( 102 ) the capabilities of each of the members of a network and upon launching an application at a member, determining ( 104 ) a profile of members of the network required to support the application. A master device ( 12 ) can optionally disassociate ( 106 ) from the slave devices surveyed until an application is launched having a profile requiring a particular slave device. The method can further include associating ( 108 ) the members of the network in the profile and temporarily disassociating ( 110 ) a remaining group of members of the network. At another step ( 112 ), the method can also assign a higher priority to the members meeting the profile and assign a lower priority to the members that are temporarily disassociated and thereby reduce a maintenance cycle by probing the lower priority members less frequently.
Abstract:
The invention concerns a system (100) and method (300) for charging a battery. The method includes the steps of supplying (312) a charging current to a battery (110), sensing (314) the charging current to the battery and selectively signaling (316) an electronic device (118) from the battery to indicate at least one parameter of the battery as the battery is receiving the charging current. As an example, the charging current can be from a wireless charger (116). In addition, the parameter can be, for example, a charging state of the battery or a predetermined current threshold of the charging current.
Abstract:
The invention concerns a method (300) for charging a set of batteries. The method includes the steps of charging (314) a first battery (116) with a charging current from a power supply (138), monitoring (316) a parameter of the first battery during the charging step and selectively diverting (318) at least a portion of the charging current used to charge the first battery to charge a second battery (118). The first and second batteries are charged simultaneously after the parameter of the first battery reaches a predetermined threshold. As an example, the parameter can be a battery voltage or a battery temperature rate.
Abstract:
A method is provided for adjusting power consumption in a device 200 . According to the method, a command 400 to enter a low power mode is received, and, in response to receiving the command 400 , at least one operating mode of the device 200 is adjusted so as to enter a low power operating mode. In one embodiment, the at least one operating mode that is adjusted includes at least one of a quality of service setting, a vocoding ratio, a BER threshold that initiates background scanning, a frequency of monitoring other communications networks, a definition of a function key, an operating mode of a display, a resolution of a display, a sensor, a CPU clock speed, and an alert time.
Abstract:
A method for charging a battery or battery pack (206) provides a scheme for terminating a rapid charging regime only after both a temperature and voltage threshold are exceeded. This allows a battery to continue to receive a rapid charge even when battery temperatures are rising rapidly due to external (non-charge related) conditions.
Abstract:
A device (100) has a charging system (102) for coupling to a charger (103) operating in a vehicle, and a processor coupled to the charging system. The processor is programmed to detect a charging state while a user of the device is operating the vehicle, and detect an act by the user to exit the vehicle.
Abstract:
The invention concerns an apparatus (100) for indication of a charging condition. The apparatus includes an indication circuit (126) having at least one electromagnet (120) and a charge control circuit (128) for controlling charging current to a portable device (110). The indication circuit causes the apparatus to electromagnetically engage the portable device and the charge control circuit provides charging current to the portable device during the engagement. The indication circuit also causes the apparatus to electromagnetically decouple the portable device when the portable device is charged to a predetermined level to permit a user to remove the portable device from the apparatus.
Abstract:
An apparatus (10) having a portable power source (11) can make use of a plurality of differing charge depleted threshold values (and, in a preferred embodiment, corresponding visual charge-remaining indicators) to determine what level of charge remains in the portable power source (11). This in turn permits the recharging advice as suggested by the visual indicator to better track and reinforce the ordinary recharging behaviors of a given user. So configured, the total lifetime of the portable power source may be extended while also ensuring that the portable power source will be fully charged upon completion of each charging cycle.