WEAKLY SUPERVISED EXTRACTION OF ATTRIBUTES FROM UNSTRUCTURED DATA TO GENERATE TRAINING DATA FOR MACHINE LEARNING MODELS

    公开(公告)号:US20230058829A1

    公开(公告)日:2023-02-23

    申请号:US17407158

    申请日:2021-08-19

    Abstract: An online concierge system receives unstructured data describing items offered for purchase by various warehouses. To generate attributes for products from the unstructured data, the online concierge system extracts candidate values for attributes from the unstructured data through natural language processing. One or more users associate a subset candidate values with corresponding attributes, and the online concierge system clusters the remaining candidate values with the candidate values of the subset associated with attributes. One or more users provide input on the accuracy of the generated clusters. The candidate values are applied as labels to items by the online concierge system, which uses the labeled items as training data for an attribute extraction model to predict values for one or more attributes from unstructured data about an item.

    FALSE NEGATIVE PREDICTION FOR TRAINING A MACHINE-LEARNING MODEL

    公开(公告)号:US20250147997A1

    公开(公告)日:2025-05-08

    申请号:US18932301

    申请日:2024-10-30

    Applicant: Maplebear Inc.

    Abstract: An online system updates the labels on negative examples to account for the possibility that the example is a false negative. The system generates a set of initial training examples that each include a query input by the user and item data for an item presented as a result to the user's query. Each training example also includes an initial label, which represents whether the user interacted with the item presented as a search result. The online system updates the initial label for a negative training example by identifying a set of bridge queries and computing a similarity score between the query for the training example and the bridge queries. The online system computes an updated label for the negative example based on the similarity scores and updates the training example with the updated label.

    Picking sequence optimization within a warehouse for an item list

    公开(公告)号:US12217203B2

    公开(公告)日:2025-02-04

    申请号:US18235230

    申请日:2023-08-17

    Applicant: Maplebear Inc.

    Abstract: An online concierge system receives a delivery order containing a list of items, generates a suggested picking sequence for picking the delivery order in a warehouse, and transmits the suggested picking sequence to a mobile device of the shopper. Generating the suggested sequence includes applying a trained item sequence model to the delivery order. Training the item sequence model includes accessing data about a set of historical orders, determining a pairwise distance between each pair of aisles in the warehouse based on the data about the set of historical orders, and generating a distance graph based on the pairwise distance between each pair of aisles in the warehouse. The plurality of nodes represent a plurality of aisles in the warehouse, and the plurality of edges represent pairwise distances between pairs of aisles.

Patent Agency Ranking