PROVIDING AND DISPLAYING SEARCH RESULTS IN RESPONSE TO A QUERY

    公开(公告)号:US20240249335A1

    公开(公告)日:2024-07-25

    申请号:US18159357

    申请日:2023-01-25

    CPC classification number: G06Q30/0631 G06F16/9535 G06Q30/0201

    Abstract: An online system displays search results in response to a query by receiving a query from a customer. An online system accesses a set of candidate items and computes a relevance score and personalization score for each item. The online system computes the relevance score based on query data and item data and may normalize the relevance score. The online system computes the personalization score based on item data, such as an item embedding, and user data, such as a user embedding. The online system computes a query specificity score and adjusts the personalization score with the query specificity score such that generic queries have high personalization scores and specific queries have low personalization scores. The online system combines the relevance and personalization scores for each candidate item into a ranking score and displays the candidate items to the customer based on their ranking scores.

    Machine learned models for search and recommendations

    公开(公告)号:US12287819B2

    公开(公告)日:2025-04-29

    申请号:US18415551

    申请日:2024-01-17

    Applicant: Maplebear Inc.

    Abstract: A system may generate a prompt based in part on a search query from a customer client device. The prompt instructs a machine learned model to provide item predictions. And the model was trained by: converting structured data describing items of an online catalog to annotated text data (unstructured data), generating training examples based in part on the annotated text data, and training the model using the training examples. The system may receive item predictions generated by the prompt being applied to the machine learned model, the item predictions may have corresponding item identifiers. The item predictions are processed to identify a recommended item from the item predictions. The processing includes determining item information for the recommended item using an item identifier associated with the recommended item. The item information is provided to the customer client device.

    Accounting for item attributes when selecting items satisfying a query based on item embeddings and an embedding for the query

    公开(公告)号:US12259894B2

    公开(公告)日:2025-03-25

    申请号:US17666531

    申请日:2022-02-07

    Applicant: Maplebear Inc.

    Abstract: An online system maintains various items and maintains values for different attributes of the items, as well as an item embedding for each item. When the online system receives a query for retrieving one or more items, the online system generates an embedding for the query. Based on measures of similarity between the embedding for the query and item embeddings, the online system selects a set of items. The online system identifies a specific attribute of items and generates a whitelist of values for the specific attribute based on measures of similarity between item embeddings for items in the selected set and the embedding for the query. The online system removes items having values for the selected attribute outside of the whitelist of values from the selected set of items to identify items more likely to be relevant to the query.

Patent Agency Ranking