-
公开(公告)号:US12266006B2
公开(公告)日:2025-04-01
申请号:US18159357
申请日:2023-01-25
Applicant: Maplebear Inc.
Inventor: Taesik Na , Vinesh Reddy Gudla , Xiao Xiao
IPC: G06Q30/06 , G06F16/9535 , G06Q30/0201 , G06Q30/0601
Abstract: An online system displays search results in response to a query by receiving a query from a customer. An online system accesses a set of candidate items and computes a relevance score and personalization score for each item. The online system computes the relevance score based on query data and item data and may normalize the relevance score. The online system computes the personalization score based on item data, such as an item embedding, and user data, such as a user embedding. The online system computes a query specificity score and adjusts the personalization score with the query specificity score such that generic queries have high personalization scores and specific queries have low personalization scores. The online system combines the relevance and personalization scores for each candidate item into a ranking score and displays the candidate items to the customer based on their ranking scores.
-
12.
公开(公告)号:US20240330718A1
公开(公告)日:2024-10-03
申请号:US18625042
申请日:2024-04-02
Applicant: Maplebear Inc.
Inventor: Li Tan , Tejaswi Tenneti , Shishir Kumar Prasad , Huapu Pan , Taesik Na , Tyler Russell Tate , Joshua Roberts , Haixun Wang
IPC: G06N5/022 , G06F16/901 , G06F40/205 , G06F40/40
CPC classification number: G06N5/022 , G06F16/9024 , G06F40/205 , G06F40/40
Abstract: An online system generates a knowledge graph database representing relationships between entities in the online system. The online system generates the knowledge graph database by at least obtaining descriptions for an item. The online system generates one or more prompts to a machine-learned language model, where a prompt includes a request to extract a set of attributes for the item from the description of the item. The online system receives a response generated from executing the machine-learned language model on the prompts. The online system parses the response to extract the set of attributes for the item. For each extracted attribute, the online system generates connections between an item node representing the item and a set of attribute nodes for the extracted set of attributes in the database.
-
公开(公告)号:US20240070210A1
公开(公告)日:2024-02-29
申请号:US17899441
申请日:2022-08-30
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Ramasubramanian Balasubramanian , Taesik Na , Karuna Ahuja
IPC: G06F16/9532 , G06Q30/06
CPC classification number: G06F16/9532 , G06Q30/0631
Abstract: A computer-implemented method for suggesting keywords as a search term of a content item includes receiving, from a content provider, information about the content item in a database of content items. The method further includes generating a set of seed keywords related to the content item, and expanding the set of seed keywords to a plurality of candidate keywords. The plurality of candidate keywords are then scored based, at least in part, on an engagement metric measuring a user engagement with the content item in response to being presented with results from a search query comprising the candidate keyword. A candidate keyword is then selected from the plurality of candidate keywords based on the scoring, and stored relationally to the content item to define an audience for a recommendation about the content item, providing a suggestion to the content provider.
-
14.
公开(公告)号:US20230252032A1
公开(公告)日:2023-08-10
申请号:US17666531
申请日:2022-02-07
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Taesik Na , Zhihong Xu , Guanghua Shu , Tejaswi Tenneti , Haixun Wang
IPC: G06F16/2457 , G06F16/242
CPC classification number: G06F16/24578 , G06F16/2438
Abstract: An online system maintains various items and maintains values for different attributes of the items, as well as an item embedding for each item. When the online system receives a query for retrieving one or more items, the online system generates an embedding for the query. Based on measures of similarity between the embedding for the query and item embeddings, the online system selects a set of items. The online system identifies a specific attribute of items and generates a whitelist of values for the specific attribute based on measures of similarity between item embeddings for items in the selected set and the embedding for the query. The online system removes items having values for the selected attribute outside of the whitelist of values from the selected set of items to identify items more likely to be relevant to the query.
-
15.
公开(公告)号:US20250005654A1
公开(公告)日:2025-01-02
申请号:US18217329
申请日:2023-06-30
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Raochuan Fan , Prakash Putta , Vinesh Reddy Gudla , Nkemakonam Paulet Okoye , Taesik Na , Tejaswi Tenneti
IPC: G06Q30/0601
Abstract: An online concierge system allows a customer to search items offered by a retailer by providing a set of items to the customer based on a search query. To account for varying availability of items at the retailer, the online concierge system modifies rankings in the set of items having less than a threshold predicted availability at the retailer. This reduces a likelihood selection of an item likely to be unavailable at the retailer. To maintain customer confidence in the items selected based on the search results by maintaining visibility of items relevant to the search query, the online concierge system determines how much an item is modified within the set based on search query attributes, item attributes, or customer characteristics. This allows different items to be adjusted different amounts in a set based on the item, as well as the search query for which the item was selected.
-
公开(公告)号:US20240303711A1
公开(公告)日:2024-09-12
申请号:US18596592
申请日:2024-03-05
Applicant: Maplebear Inc.
Inventor: Li Tan , Tejaswi Tenneti , Shishir Kumar Prasad , Huapu Pan , Allan Stewart , Taesik Na , Tyler Russell Tate , Joshua Roberts , Haixun Wang
IPC: G06Q30/0601 , G06F16/9532
CPC classification number: G06Q30/0627 , G06F16/9532 , G06Q30/0635
Abstract: A system, for example, an online system uses a machine learning based language model, for example, a large language model (LLM) to process high-level natural language queries received from users. The system receives a natural language query from a user of a client device. The system determines contextual information associated with the query. Based on this information, the system generates a prompt for the machine learning based language model. The system receives a response from the machine learning based language model. The system uses the response to generate a search query for a database. The system obtains results returned by the database in response to the search query and provides them to the user. The system allows users to specify high level natural language queries to obtain relevant search results, thereby improving the overall user experience.
-
公开(公告)号:US20240241897A1
公开(公告)日:2024-07-18
申请号:US18415551
申请日:2024-01-17
Applicant: Maplebear Inc.
Inventor: Haixun Wang , Taesik Na , Li Tan , Jian Li , Xiao Xiao
IPC: G06F16/33 , G06F16/338 , G06N20/00
CPC classification number: G06F16/3344 , G06F16/338 , G06N20/00
Abstract: A system may generate a prompt based in part on a search query from a customer client device. The prompt instructs a machine learned model to provide item predictions. And the model was trained by: converting structured data describing items of an online catalog to annotated text data (unstructured data), generating training examples based in part on the annotated text data, and training the model using the training examples. The system may receive item predictions generated by the prompt being applied to the machine learned model, the item predictions may have corresponding item identifiers. The item predictions are processed to identify a recommended item from the item predictions. The processing includes determining item information for the recommended item using an item identifier associated with the recommended item. The item information is provided to the customer client device.
-
18.
公开(公告)号:US20230252049A1
公开(公告)日:2023-08-10
申请号:US17736716
申请日:2022-05-04
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Taesik Na , Tejaswi Tenneti , Haixun Wang , Xiao Xiao
IPC: G06F16/28 , G06F16/2457 , G06F16/248 , G06K9/62
CPC classification number: G06F16/285 , G06F16/24573 , G06F16/24575 , G06F16/248 , G06K9/6276
Abstract: An online system leverages stored interactions with items made by users after the online system received queries to determine display of items satisfying the query. For example, the online system trains a model to predict a likelihood of a user performing an interaction with an item displayed after a query was received. As different items receive different amounts of interaction from users, limited historical interaction with certain items may limit accuracy of the model. The online system generates embeddings for previously received queries and uses measures of similarity between embeddings for queries to generate clusters of queries. Previous interactions with queries in a cluster are combined, with the combined data being used for determining display of items in response to a query.
-
公开(公告)号:US20230146336A1
公开(公告)日:2023-05-11
申请号:US17524491
申请日:2021-11-11
Applicant: Maplebear Inc. (dba Instacart)
Inventor: Haixun Wang , Taesik Na , Tejaswi Tenneti , Saurav Manchanda , Min Xie , Chuan Lei
CPC classification number: G06Q30/0603 , G06N20/00
Abstract: To simplify retrieval of items from a database that at least partially satisfy a received query, an online concierge system trains a model that outputs scores for items from the database without initially retrieving items for evaluation by the model. The online concierge system pre-trains the model using natural language inputs corresponding to items from the database, with a natural language input including masked words that the model is trained to predict. Subsequently, the model is refined using multi-task training where a task is trained to predict scores for items from the received query. The online concierge system selects items for display in response to the received query based on the predicted scores.
-
公开(公告)号:US20250147997A1
公开(公告)日:2025-05-08
申请号:US18932301
申请日:2024-10-30
Applicant: Maplebear Inc.
Inventor: Xiaochen Wang , Taesik Na , Xiao Xiao , Ruhan Zhang , Xuan Zhang , Tejaswi Tenneti , Haixun Wang
IPC: G06F16/35 , G06F16/383
Abstract: An online system updates the labels on negative examples to account for the possibility that the example is a false negative. The system generates a set of initial training examples that each include a query input by the user and item data for an item presented as a result to the user's query. Each training example also includes an initial label, which represents whether the user interacted with the item presented as a search result. The online system updates the initial label for a negative training example by identifying a set of bridge queries and computing a similarity score between the query for the training example and the bridge queries. The online system computes an updated label for the negative example based on the similarity scores and updates the training example with the updated label.
-
-
-
-
-
-
-
-
-