DETERMINING GENERIC ITEMS FOR ORDERS ON AN ONLINE CONCIERGE SYSTEM

    公开(公告)号:US20220414746A1

    公开(公告)日:2022-12-29

    申请号:US17929797

    申请日:2022-09-06

    Abstract: An online system provides options for selection by a user. The online system receives a query entered on a client device. The online system queries an item database to retrieve a set of items related to the query and assigns each item to a product category in a predefined taxonomy that maps items to product categories. The online system inputs each item into a prediction model trained to predict a probability that an item is available at a warehouse location. The online system determines that a first product category has low availability based on predicted probabilities for items in the first product category. Responsive to determining that a first product category has low availability, the online system generates a generic item for the first product category and sends a list of items including the generic item to the client device for display responsive to the query.

    QUERY REFORMULATIONS FOR AN ITEM GRAPH

    公开(公告)号:US20220277373A1

    公开(公告)日:2022-09-01

    申请号:US17188214

    申请日:2021-03-01

    Abstract: An online concierge system generates an item graph connecting item nodes with attribute nodes of the items. When the online concierge system receives a search query to identify one or more items from a customer, the online concierge system parses the search query into combinations of terms and identifies item nodes and attribute nodes related to the search query. The online concierge system may determine that no item nodes meet presentation criteria. The online concierge system may determine that a reformulated search query has a higher conversion probability than the search query received from the customer. The online concierge system reformulates the search query. The online concierge system selects item nodes as search results. The online concierge system transmits the search results to the customer.

    INTEGRATING FEATURED PRODUCT RECOMMENDATIONS IN APPLICATIONS WITH MACHINE-LEARNED LARGE LANGUAGE MODELS (LLMS)

    公开(公告)号:US20250156926A1

    公开(公告)日:2025-05-15

    申请号:US18943691

    申请日:2024-11-11

    Applicant: Maplebear Inc.

    Abstract: An online system receives a user request from a client device through the interface, identifies one or more featured products based on the query, and generates a prompt for input to a machine-learned generative language model. The prompt specifies both the user's request and a request to suggest the featured products in association with a response to the user request. This prompt is fed into a machine-learned language model via a model serving system for execution. The online system receives a response generated by the model, generates a query response based on the response generated by the model, and transmits instructions to the client device to display the query response. The online system collects data on user interactions with the uses the collected data to fine-tune the machine-learned generative language model.

    MODIFYING RANKINGS OF ITEMS IN SEARCH RESULTS BASED ON ITEM AVAILABILITIES AND SEARCH QUERY ATTRIBUTES

    公开(公告)号:US20250005654A1

    公开(公告)日:2025-01-02

    申请号:US18217329

    申请日:2023-06-30

    Abstract: An online concierge system allows a customer to search items offered by a retailer by providing a set of items to the customer based on a search query. To account for varying availability of items at the retailer, the online concierge system modifies rankings in the set of items having less than a threshold predicted availability at the retailer. This reduces a likelihood selection of an item likely to be unavailable at the retailer. To maintain customer confidence in the items selected based on the search results by maintaining visibility of items relevant to the search query, the online concierge system determines how much an item is modified within the set based on search query attributes, item attributes, or customer characteristics. This allows different items to be adjusted different amounts in a set based on the item, as well as the search query for which the item was selected.

    Providing search suggestions based on previous searches and conversions

    公开(公告)号:US12175482B2

    公开(公告)日:2024-12-24

    申请号:US17486395

    申请日:2021-09-27

    Applicant: Maplebear Inc.

    Abstract: An online concierge system suggests subsequent search queries based on previous search queries and whether the previous search queries resulted in conversions. The online concierge system trains a machine learning model using previous delivery orders and whether initial and subsequent search queries in the previous delivery orders resulted in conversions. When the online concierge system receives a search query to identify one or more items from a customer, the online concierge system parses the search query into combinations of terms and identifies items related to the search query. In response to the search query resulting in a conversion, the online concierge system retrieves a conversion graph and presents a suggested subsequent search query based on the conversion graph. In response to the search query not resulting in a conversion, the online concierge system retrieves a non-conversion graph and presents a suggested subsequent search query based on the non-conversion graph.

Patent Agency Ranking