Abstract:
Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about the scattering phase function is preserved. Lens-based and lens-free fiber optic LEBS probes are described that are capable of measuring optical properties of a target tissue through depth-limited measurements of backscattering angles within the enhanced backscattered cone.
Abstract:
The present technology provides methods, systems, and apparatuses to achieve high throughput and high speed acquisition of partial wave spectroscopic (PWS) microscopic images. In particular, provided herein are high-throughput, automated partial wave spectroscopy (HT/A-PWS) instruments and systems capable of rapid acquisition of PWS Microscopic images and clinical, diagnostic, and research applications thereof.
Abstract:
The present invention relates to detection of cancer, or assessment of risk of development thereof. In particular, the present invention provides compositions and methods detection of field carcinogenesis by identification of ultrastructural and molecular markers in a subject.
Abstract:
The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
Abstract:
Certain examples provide a structured illumination microscopy system. The example system includes a laser source to generate excitation illumination directed toward a target. The example system includes a modulator to modulate the excitation illumination temporally in a controllable spatial pattern to be constructed on the target object to provide sub-diffractional resolution in a lateral direction with respect to the target. The example system includes two synchronized laser scanning mirror units in confocal arrangement, the laser scanning units to be synchronized and controlled by a computing device, a first of the scanning mirror units to receive the modulated excitation illumination and project the modulated excitation illumination on the target object and a second of the scanning mirror units to receive emission fluorescence from the target and project the emission fluorescence. The example system includes a detector to collect emission fluorescence from the target via the second of the scanning mirror units.
Abstract:
Certain examples provide a structured illumination microscopy system. The example system includes a laser source to generate excitation illumination directed toward a target. The example system includes a modulator to modulate the excitation illumination temporally in a controllable spatial pattern to be constructed on the target object to provide sub-diffractional resolution in a lateral direction with respect to the target. The example system includes two synchronized laser scanning mirror units in confocal arrangement, the laser scanning units to be synchronized and controlled by a computing device, a first of the scanning mirror units to receive the modulated excitation illumination and project the modulated excitation illumination on the target object and a second of the scanning mirror units to receive emission fluorescence from the target and project the emission fluorescence. The example system includes a detector to collect emission fluorescence from the target via the second of the scanning mirror units.
Abstract:
Disclosed are compositions comprising myokines and their methods of preparation and use. The disclosed myokine compositions and methods may comprise myokines having a molecular weight of greater than about 10 kDa such as myostatin and metrnl. The disclosed myokine compositions and methods may be utilized for treating and/or preventing cell proliferative and metabolic diseases and disorders. In particular, the disclosed myokine compositions and methods may be utilized for treating and/or preventing cell proliferative and metabolic diseases and disorders, such as cancer, and metabolic diseases and disorders, such as diabetes, non-alcoholic fatty liver disease, and heart disease.
Abstract:
An automated calibration system that includes a probe guide and a target assembly. The probe guide receives an optical probe, and the target assembly includes one or more calibration targets. The target assembly is slideable relative to the probe guide so that a first calibration target is aligned under the optical probe in a first position of the target assembly and a second calibration target is aligned under the optical probe in a second position of the target assembly.
Abstract:
The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
Abstract:
Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about the scattering phase function is preserved. Lens-based and lens-free fiber optic LEBS probes are described that are capable of measuring optical properties of a target tissue through depth-limited measurements of backscattering angles within the enhanced backscattered cone.