Scanned image correction apparatus, method and mobile scanning device

    公开(公告)号:US10948427B2

    公开(公告)日:2021-03-16

    申请号:US16231373

    申请日:2018-12-21

    Abstract: The present disclosure provides a scanned image correction apparatus, method and a mobile scanning device. The apparatus includes an image collector, an arm swing detector, and an image processor. The image collector is configured to collect a scanned image of an object under inspection during a scanning process of scanning the object under inspection by the mobile scanning device, and determine an image parameter of the scanned image. The arm swing detector is disposed at a monitor point on a detector arm of the mobile scanning device, and configured to detect a displacement offset of the detector arm in a specified direction and build an arm swing model of the detector arm. The image processor is configured to determine a change relationship between the image parameter of the scanned image and the displacement offset of the detector arm, and correct the scanned image based on the change relationship.

    Gantry configuration for combined mobile radiation inspection system
    13.
    发明授权
    Gantry configuration for combined mobile radiation inspection system 有权
    组合式移动辐射检测系统的龙门架配置

    公开(公告)号:US09453935B2

    公开(公告)日:2016-09-27

    申请号:US14412512

    申请日:2013-07-02

    CPC classification number: G01V5/0016 F16M11/425 G01N23/04

    Abstract: The present invention discloses a gantry configuration for a combined mobile radiation inspection system comprising a first arm frame, a second arm frame and a third arm frame. The first, second and third arm frames define a scanning channel to allow an inspected object to pass therethrough. The gantry configuration for the combined mobile radiation inspection system further comprises a position sensing device configured to detect a position error between the first arm frame and the second arm frame; and a controller configured to control a moving speed of at least one of the first arm frame and the second arm frame based on the detected position error, so that the position error between the first arm frame and the second arm frame is equal to zero. Compared with the prior art, the present invention is advantageous at least in that an automatic deviation correction device is provided on the gantry arm frame, and thus the position error between both side arm frames can be automatically controlled to zero, so that the gantry arm frame can be effectively prevented from being subjected to a force and deforming, and the radiation detector can receive the full ray, thereby improving the imaging quality.

    Abstract translation: 本发明公开了一种用于组合的移动辐射检查系统的机架结构,其包括第一臂架,第二臂架和第三臂架。 第一,第二和第三臂架限定扫描通道以允许被检查物体通过。 组合移动辐射检查系统的台架结构还包括一个位置检测装置,其配置成检测第一臂架和第二臂架之间的位置误差; 以及控制器,其被配置为基于所检测的位置误差来控制所述第一臂框架和所述第二臂架中的至少一个的移动速度,使得所述第一臂框架和所述第二臂架之间的位置误差等于零。 与现有技术相比,本发明至少是在台架臂架上设置自动偏差校正装置是有利的,因此两侧臂架之间的位置误差可被自动控制为零,使得机架臂 可以有效地防止框架受到力和变形,并且放射线检测器可以接收全光线,从而提高成像质量。

    Vehicular radiation inspection system
    14.
    发明授权
    Vehicular radiation inspection system 有权
    车载辐射检查系统

    公开(公告)号:US09448188B2

    公开(公告)日:2016-09-20

    申请号:US14412516

    申请日:2013-07-02

    Abstract: The present invention discloses a vehicular radiation inspection system comprising a mobile vehicle body, a detection arm, a radiation source and a detector. The vehicular radiation inspection system further comprises a following mechanism separated from the detection arm. The following mechanism contains radiation protection material, and the following mechanism follows the detection arm to move in a non-contact manner during inspection of the inspected object, so as to prevent radiation leakage. In the present invention, it does not need to infuse radiation protection material having a high density, such as lead, into the detection arm. Therefore, it can effectively decrease the weight of the detection arm, and it does not need to provide a balance counterweight on the mobile vehicle body on which the detection arm is carried, thereby effectively solving the problem that the vehicular radiation inspection system has an excessively large mass. Meanwhile, in the present invention, the moving process of the following mechanism is accurately controlled, so as to prevent the following mechanism from hitting the detection arm.

    Abstract translation: 本发明公开了一种包括移动车身,检测臂,辐射源和检测器的车辆辐射检查系统。 车辆辐射检查系统还包括与检测臂分离的跟随机构。 以下机构包含辐射防护材料,并且在检查被检查物体的检查期间,跟随检测臂的机构以非接触的方式移动,以防止辐射泄漏。 在本发明中,不需要将诸如铅的高密度的辐射防护材料注入到检测臂中。 因此,能够有效地降低检测臂的重量,并且不需要在携带检测臂的移动体上提供平衡配重,从而有效地解决了车辆用辐射检查系统过度的问题 大量。 同时,在本发明中,精确地控制以下机构的移动过程,以防止以下机构撞击检测臂。

    GANTRY CONFIGURATION FOR COMBINED MOBILE RADIATION ISPECTION SYSTEM
    15.
    发明申请
    GANTRY CONFIGURATION FOR COMBINED MOBILE RADIATION ISPECTION SYSTEM 有权
    用于组合的移动辐射系统的GANTRY配置

    公开(公告)号:US20150192689A1

    公开(公告)日:2015-07-09

    申请号:US14412512

    申请日:2013-07-02

    CPC classification number: G01V5/0016 F16M11/425 G01N23/04

    Abstract: The present invention discloses a gantry configuration for a combined mobile radiation inspection system comprising a first arm frame, a second arm frame and a third arm frame. The first, second and third arm frames define a scanning channel to allow an inspected object to pass therethrough. The gantry configuration for the combined mobile radiation inspection system further comprises a position sensing device configured to detect a position error between the first arm frame and the second arm frame; and a controller configured to control a moving speed of at least one of the first arm frame and the second arm frame based on the detected position error, so that the position error between the first arm frame and the second arm frame is equal to zero. Compared with the prior art, the present invention is advantageous at least in that an automatic deviation correction device is provided on the gantry arm frame, and thus the position error between both side arm frames can be automatically controlled to zero, so that the gantry arm frame can be effectively prevented from being subjected to a force and deforming, and the radiation detector can receive the full ray, thereby improving the imaging quality.

    Abstract translation: 本发明公开了一种用于组合的移动辐射检测系统的机架结构,其包括第一臂架,第二臂架和第三臂架。 第一,第二和第三臂架限定扫描通道以允许被检查物体通过。 组合移动辐射检查系统的台架结构还包括一个位置检测装置,其配置成检测第一臂架和第二臂架之间的位置误差; 以及控制器,其被配置为基于所检测的位置误差来控制所述第一臂框架和所述第二臂架中的至少一个的移动速度,使得所述第一臂框架和所述第二臂架之间的位置误差等于零。 与现有技术相比,本发明至少是在台架臂架上设置自动偏差校正装置是有利的,因此两侧臂架之间的位置误差可被自动控制为零,使得机架臂 可以有效地防止框架受到力和变形,并且放射线检测器可以接收全光线,从而提高成像质量。

    Movable detection device and detection method

    公开(公告)号:US12281994B2

    公开(公告)日:2025-04-22

    申请号:US18012866

    申请日:2021-06-23

    Abstract: A mobile detection device and a detection method are provided. The mobile detection device includes: a bearing platform, being arranged fixedly, and including a bearing surface bearing an object to be detected; a movable gantry, located on a side of the bearing surface bearing the object to be detected and configured to be movable relative to the bearing platform; a movable bearing device, located on a side of the bearing surface away from the movable gantry and configured to be movable relative to the bearing platform; a first radiation source, arranged on one of the movable gantry and the movable bearing device, and a first detector array, arranged opposite to the radiation source and arranged on the other of the movable gantry and the movable bearing device, wherein the movable gantry and the movable bearing device are configured to be moved synchronously relative to the bearing platform.

    Laser speed measuring method, control device and laser velocimeter

    公开(公告)号:US11573322B2

    公开(公告)日:2023-02-07

    申请号:US16826235

    申请日:2020-03-22

    Abstract: The present disclosure provides a laser speed measuring method, control device and a laser velocimeter, and relates to the technical field of security inspection. The laser speed measuring method comprises the steps of: acquiring detection data within a predetermined detection angle range in a plurality of paralleled horizontal planes having different heights, from a plurality of laser rays detected towards a road extending direction in the horizontal plane; acquiring three-dimensional point cloud data according to the detection data; determining a position of a measured object in the road extending direction according to the three-dimensional point cloud data; and determining a speed of the measured object according to the position change of the measured object along the road extending direction at different timing.

Patent Agency Ranking