Abstract:
The invention relates to a method for authenticating an optically variable security element (1), in particular a diffractive security element, with the steps: a) capturing an image sequence with at least one individual image of the security element (1) by means of a sensor (31), in particular a hand-held device (3), preferably a smartphone, tablet or a PDA; b) checking whether at least one predetermined item of optical information is present in at least one individual image of the image sequence.
Abstract:
A multilayer body includes a transparent first layer. In the transparent first layer, a multiplicity of microlenses arranged in accordance with a microlens grid are impressed in a first region. Furthermore, the multilayer body includes a second layer, which is arranged below the first layer and in a fixed position with respect to the first layer and has a multiplicity of microimages arranged in accordance with a microimage grid and in each case in an at least regional overlap with one of the microlenses of the microlens grid for the purpose of generating a first optically variable information item. The grid pitches of the microimage grid and of the microlens grid in each case in at least one spatial direction are less than 300 μm.
Abstract:
A method for forming a volume hologram film having security elements which are formed as a transfer section of the volume hologram film is described, wherein the volume hologram film has n volume hologram layers arranged one over another. The production of the volume hologram film is carried out in a roll-to-roll method with the following method steps: a) providing a carrier film from a supply roll; b) applying an i-th photopolymer layer to the carrier film; c) forming an i-th volume hologram in the photopolymer layer; d) forming an i-th volume hologram layer by curing the i-th photopolymer layer; e) repeating process steps b) to e) n−1 times; f) applying an adhesive layer to the background layer; g) winding the volume hologram film onto a take-up roll.
Abstract:
A method for producing security elements, security elements, a security document with at least one security element as well as a transfer film with at least one security element wherein a three-dimensional object is recorded and a surface profile of the three-dimensional object, described by a function F(x,y), is determined, wherein the function F(x,y) describes the distance between the surface profile and a two-dimensional reference surface spanned by co-ordinate axes x and y at the co-ordinate points x and y. A first microstructure is determined in such a way that the structure height of the first microstructure is limited to a predetermined value smaller than the maximum distance between the surface profile and the two-dimensional reference surface, and the first microstructure provides an observer with a first optical perception which corresponds to the surface profile of the three-dimensional object described by the function F(x,y).
Abstract:
A method for producing a security element formed as a lenticular flip, including a micro-optical layer, a carrier substrate and an image layer, wherein the image layer includes n images for n=1 to i which are visible from an n-th observation angle allocated to the n-th image, and wherein n is at least 1. The images are imaged on a photoresist with parallel light in contact print or by means of projection. After the photoresist is developed, an image layer which includes the i images is present.
Abstract:
The invention relates to a security element (1) with a first volume hologram layer (11), which spans a coordinate system with the coordinate axes x and y (3, 4) perpendicular to each other in an unbent state of the security element (1), wherein a first volume hologram is introduced into the first volume hologram layer (11) in at least one first area (51), wherein the first volume hologram is formed such that a first item of information (21-30) is visible for an observer (7) in a first observation situation in a first predefined bent state of the security element (1) and is not visible in the first observation situation in the unbent state of the security element (1) or vice versa.
Abstract:
Method for producing a plastic molded part (1), wherein, in the method, a mold insert (3) with a diffractive surface relief (32) is provided, the mold insert (3) is inserted into one mold half of an injection mold (5) which, together with at least one further mold half, forms a cavity for producing the plastic molded part (1), wherein the mold insert (3) is inserted into the injection mold (5) such that the diffractive surface relief (32) forms a partial area of the surface of the cavity formed by the mold half (5), and the plastic molded part (1) is molded by injection molding by means of the injection mold (5). The invention furthermore relates to a mold insert as well as an injection mold for such a method, as well as a plastic molded part produced in this way.
Abstract:
A security element with a first volume hologram layer, which spans a coordinate system with the coordinate axes x and y perpendicular to each other in an unbent state of the security element, wherein a first volume hologram is introduced into the first volume hologram layer in at least one first area, wherein the first volume hologram is formed such that a first item of information is visible for an observer in a first observation situation in a first predefined bent state of the security element and is not visible in the first observation situation in the unbent state of the security element or vice versa.
Abstract:
A multilayer body with a carrier and a layer arranged thereon which comprises electrically conductive material in such an arrangement comprises an information area and a background area (18) which are galvanically separated from each other. In each information area a first zone (10) with electrically conductive material is provided, over the entirety of which electrically conductive material is conductively connected to it. In each background area a plurality of second zones with electrically conductive material is provided, which are galvanically separated from each other. Each first zone (10) preferably occupies a surface area that is at least five times larger than each of the second zones. The electrically conductive material is preferably provided with an average surface coverage which varies over all information areas and background areas (18) by less than 25%. A homogeneous appearance of the multilayer body is thereby ensured, and an item of information provided in the information area, provided by the shape, size and/or alignment of the first zone, is not visible without aids, and therefore cannot be copied.
Abstract:
The invention relates to a method for inspecting a security document (10), the use of an augmented reality system (20) for inspecting a security document (10) as well as an augmented reality system (20). One or more first items of information of the security document (10) are captured by means of an augmented reality system (20), in particular a pair of smartglasses. The one or more first items of information are then checked by comparison with a database (40). Furthermore, one or more of the results of the check of the one or more first items of information are stored and/or one or more of the results of the check of the one or more first items of information are output by means of the augmented reality system (20).