Abstract:
A wireless network employs at least a base station (1 to 3) and a plurality of assigned terminals (4 to 14) for exchanging user data and control data. That base station (1 to 3) includes a device (21, 22) for correlating a signaling sequence transmitted by at least one terminal (4 to 14) to indicate the wish to use a contention channel and for detecting the pulse evolved from a received and correlated signaling sequence. After a signaling sequence has been detected, the base station (1 to 3) transmits a provision message over a contention channel to be utilized by the assigned terminals (4 to 14).
Abstract:
The invention relates to a method of transmitting data packets between a transmitter and a receiver in predefined numbered slots, wherein the transmitter is provided for sending in one slot data of different streams multiplexed in a data packet to the receiver, wherein a STOP command is provided for at least one numbered slot, wherein the receiver is provided for sending the STOP command to the transmitter, wherein a mapping table is provided which maps each stop command of the numbered slots to a set of streams of the respective slot, wherein the stop command is provided for blocking a set of the streams of the respective slot according to the mapping table.
Abstract:
In the data packet transmission system the receiver transmits a positive confirmation information to transmitter on faultless reception of data packet, but transmits a negative confirmation information on faulty data packet reception. The receiver transmits a repetition request to transmitter, requiring repeat transmission of data packet if no new transmission of respective data packet has taken place, despite transmitted negative confirmation. Independent claims are included for transmitter and receiver of data transmission system.
Abstract:
The invention relates to an X-ray detector (30) that comprises an array of sensitive elements (Pi-1,b, Pia, Pib, Pi+1,a, Pi+1,b) and at least two analyzer gratings (G2a, G2b) disposed with different phase and/or periodicity in front of two different sensitive elements. Preferably, the sensitive elements are organized in macro-pixels (IIi) of e.g. four adjacent sensitive elements, wherein analyzer gratings with mutually different phases are disposed in front said sensitive elements. The detector (30) can particularly be applied in an X-ray device (100) for generating phase contrast images because it allows to sample an intensity pattern (I) generated by such a device simultaneously at different positions.
Abstract:
The invention relates to a radiation detector (200), particularly an X-ray detector, which comprises at least one sensitive layer (212) for the conversion of incident photons (X) into electrical signals. A two-dimensional array of electrodes (213) is located on the front side of the sensitive layer (212), while its back side carries a counter- electrode (211). The size of the electrodes (213) may vary in radiation direction (y) for adapting the counting workload of the electrodes. Moreover, the position of the electrodes (213) with respect to the radiation direction (y) provides information about the energy of the detected photons (X).
Abstract:
The invention is directed at an apparatus (10), an imaging device and a method for detecting X-ray photons, in particular photons (32,34) in a computer tomograph. Photons (32,34) are converted into an electrical pulse and compared against a threshold using a discriminator (20). The electrical network (12) performing these functions comprises a switching element (28), that can modify the electrical path (22) along which the process signals travel. The trigger signal (V T ) for actuating the switching element (28) is derived from an electrical state of the electrical path (22). If a pulse associated to a photon (32,34) is detected, the switching element (28) is actuated in order to avoid that the processing of the charge pulse stemming from a first photon (32) is affected by a subsequent second photon (34).
Abstract translation:本发明涉及一种用于检测计算机断层摄影机中的X射线光子,特别是光子(32,34)的成像装置和方法的装置(10)。 光子(32,34)被转换成电脉冲,并使用鉴别器(20)与阈值进行比较。 执行这些功能的电网(12)包括开关元件(28),其可以修改过程信号沿其移动的电路径(22)。 用于致动开关元件(28)的触发信号(V SUB T)是从电路径(22)的电气状态导出的。 如果检测到与光子(32,34)相关联的脉冲,则开关元件(28)被致动以避免由第一光子(32)产生的电荷脉冲的处理受随后的第二光子( 34)。
Abstract:
Due to NACK-to-ACK misinterpretations in base stations, packets are lost, and there may be gaps in a re-ordering buffer of a base station. According to the present invention, when the receiver decodes - possibly after some retransmissions - a first data packet without an error, which first data packet is sent along with an indicator indicating that the first data packet is a new data packet, after the receiver has sent a negative confirmation message (NACK) with respect to a second data packet, the receiver sends a Revert (REV) message to the transmitter. The REV message informs the base station that the first data packet was decoded error-free, and that the second data packet is still missing on the receiving side so that the base station may re-send this second data packet.
Abstract:
In case a transmission of a MAC-hs PDU is aborted and all the RLC PDUs contained therein are discarded, delays may occur since these lost PDUs have to be retransmitted on RLC protocol level resulting in considerable delay since the Iub and Iur text interfaces have to be passed. According to an exemplary embodiment of the present invention, a transmission abortion is determined and a reduced number of data packets contained in the container which transmission has been aborted are put into another container provided with the same sequence as the proceeding aborted container and sent to the receiver. Advantageously, due to the fact that this second container may have a reduced amount of data packets contained and/or may have a reduced length, a probability that this second container is received error free at the receiving side is increased.
Abstract:
The present invention relates to an x-ray detector comprising a sensor unit (200, 300) for detecting incident x-ray radiation comprising a number of sensor elements (230, 311-314 ), a counting channel (240) per sensor element for obtaining a count signal by counting photons or charge pulses generated in response to the incident x-ray radiation since a beginning of a measurement interval, an integrating channel (250) per sensor element for obtaining an integration signal representing the total energy of radiation detected since the beginning of the measurement interval, and a processing unit (260) for estimating, from the integration signals of the sensor elements (321), count signals of sensor elements (311, 312) whose counting channel has been saturated during the measurement interval.
Abstract:
The present invention relates to radiation detector (2) comprising a radiation sensitive semiconductor element (10) generating electron-hole pairs in response to an irradiation with radiation (3), an anode electrode(20) arranged on a first surface (11) of the semiconductor element (10) facing away from the radiation, said anode electrode (20) being segmented into anode segments (21) representing anode pixels, wherein anode gaps (22) are arranged between said anode segments (21), a cathode electrode (30) arranged on a second surface (12) of the semiconductor element (10) opposite the first surface (11) and facing the radiation (3), said cathode electrode (30) being segmented into first and second cathode segments (31, 32), wherein said first cathode segments (31) are substantially arranged opposite said anode segments (21) and said second cathode segments (32) are substantially arranged opposite said anode gaps (22), and a cathode terminal (41, 42) providing electrical connections to said first cathode segments (31) and said second cathode segments (32) for coupling different electrical potentials to said first and second cathode segments (31, 32). By such an arrangement charge sharing can be effectively reduced.