Abstract:
Image server 110 for transmitting, to an image client 150, a plurality of two- dimensional [2D] views 122 of three-or higher dimensional [3D] image data for enabling a user operating the image client to navigate through the 3D image data by viewing different ones of the plurality of 2D views, the image server comprising an input 120 for obtaining the plurality of 2D views, a transmitter 130 for transmitting the plurality of 2D views in a transmission order 142 to the image client, and a processor 140 for (i) analyzing contents of the plurality of 2D views for obtaining a respective plurality of view properties, and (ii) establishing the transmission order in dependence on the plurality of view properties for transmitting the plurality of 2D views,based on a decreasing degree of information content of the 2D views.
Abstract:
The invention relates to a method for data processing. At stage 3 the position of the reference object in the reference image and its relation to a set of reference landmarks in the reference image is established at step 6. In order to enable this, the reference imaging of learning examples may be performed at step 2 and each reference image may be analyzed at step 4, the results may be stored in a suitably arranged database. In order to process the image under consideration, the image is accessed at step 11, the suitable landmark corresponding to the reference landmark in the reference image is identified at step 13 and the spatial relationship established at step 6 is applied to the landmark thereby providing the initial position of the object in the actual image. In case when for the object an imaging volume is selected, the method 1 according to the invention follows to step 7, whereby the scanning 17 is performed within the boundaries given by the thus established scanning volume. In case when for the object a model representative of the target is selected, the method 1 follows to the image segmentation step 19, whereby a suitable segmentation is performed. In case when for the model a deformable model is selected, the segmentation is performed by deforming the model thereby providing spatial boundaries of the target area. The invention further relates to an apparatus and a computer program for image processing.
Abstract:
The method 1 according to the invention is preferably practiced in real time and directly after a suitable acquisition 3 of the multi-dimensional dataset, which is accessed at step 5 and the images constituting the multi-dimensional dataset are classified at step 8. Preferably, for reducing an amount of data to be processed at step 6 the image data is subjected to a restrictive region of interest determination. At step 9 the classified cardiac images are subjected to a an image thinning operator so that the resulting images comprise a plurality of connected image components which are further analyzed at step 14. After the thinning step 9 a labeling step 11 is performed, where different connected components in the multi-dimensional dataset are accordingly labeled. This step is preferably followed by a region growing step 13, which is constrained by binary threshold used at step 8b. For each connected image component a factor F is computed at step 14. The anatomic structure is segmented at step 16 by selecting the connected image component with factor F meeting a pre-determined criterion. After this, the segmented anatomic structure is stored in a suitable format at step 18. The invention further relates to an apparatus, a working station, a viewing station and a computer program.
Abstract:
The system (10) comprises an input (2) for accessing the suitable input data. The core of the system (10) is formed by a processor (4) which is arranged to operate the components of the system (10), it being the input (2), a computing unit (5), a working memory (6). The computing unit (5) preferably comprises a suitable number of executable subroutines (5a, 5b, 5c, 5d, 5e, and 5f) to enable a constructing of a geometric model of the movable body based on the results of the segmentation step, finding a spatial correspondence between the first and second image dataset, mapping the texture image dataset on geometric model, fusing the geometric model and the mapped texture image dataset. The apparatus (10) according to the invention further comprises a coder (7) arranged to code the determined region of interest in accordance to a pre-selected criterion. The criterion may be selectable from a list of valid criteria, stored in a file (7a). Preferably, the coder (7), the computing unit (5) and the processor (4) are operable by a computer program (3), preferably stored in memory (8). An output (9) is used for outputting the results of the processing, like fused image data representing the textured, preferably animated geometric model of the movable body. The invention further relates to a method for integration of medical diagnostic information and a geometric model of a movable body and to a computer program.