Abstract:
The present invention relates to a capacitor. The capacitor includes a substrate; a dielectric layer formed on the substrate; and an electrode layer comprising a first electrode layer and a second electrode layer formed on the dielectric layer, wherein the first electrode layer and the second electrode layer are separated from each other, and at least a portion of the first electrode layer and at least a portion of the second electrode layer are disposed on a same surface. With this configuration, applying the electricity becomes easy, and since the first and the second electrode layers function as the electrodes being charged with different polarity electrical charges respectively, manufacturing thereof becomes easy, and the structure thereof is simple.
Abstract:
The present invention relates to an optical device substrate comprising: unit block substrates wherein a flat panel metal substrate are partitioned into n (n>1) number of optical device attachment areas, and the insulating members are formed inside the metal substrate in a way that the adjacent partitioned areas are insulated; first horizontal insulating members for insulating between the unit block substrates being stacked; outer metal electrode substrates bonded to the unit block substrates located in the upper end and the lower end among the unit block substrates being stacked; second horizontal insulating members for insulating between the outer metal electrode substrates and the unit block substrates; a pair of inner metal electrode substrates inserted instead of the first horizontal insulating members into more than any one of the adjacent unit block substrates; and third horizontal insulating members for insulating the pair of inner metal electrode substrates.
Abstract:
A micro heater includes a substrate and a heater electrode formed on the substrate. The substrate includes a plurality of pores formed to vertically extend through the substrate. A micro sensor includes a substrate, a sensor electrode formed on the substrate, and a heater electrode formed on the substrate. A protective layer may be used to protect any of the electrodes against oxidation. Any of the electrodes may be formed on a barrier layer positioned on the porous layer.
Abstract:
A chip mounting substrate including a plurality of conductive portions to apply an electrode voltage to a mounted chip having electrode portions, at least one insulation portion configured to electrically isolate conductive portions, a cavity depressed inward of the conductive portions and providing a space in which the chip is mounted and bumps formed on surfaces of the conductive portions having the cavity and bonded to the electrode portions. In the case of a metal substrate, a tight bonding is enabled between the chip and the substrate by bonding a plating layer formed on the electrode portions of the chip using bumps formed on the metal substrate.
Abstract:
Provided is a method of mounting a chip. The method includes: forming a bump at one surface of a cavity formed concavely in an inner direction of a substrate; performing a coining process to flatten a surface of the bump; coating a solder material on the bump subjected to the coining process; and bonding a chip and the bump by melting the solder material, wherein an electrode portion or a metal portion is formed on a bottom of the chip. For a metal substrate according to the present invention, wherein a vertical insulating layer is included, since the electrode portion of the chip and the electrode portion of the substrate have to be electrically connected, the metal substrate is bonded to the electrode portion of the chip using the bump additionally formed on the metal substrate, so the heat generated in the chip can be rapidly transferred to the substrate, and the junction temperature of the chip can be decreased, thereby enhancing the light efficiency and the. In addition, cracking due to the difference of thermal expansion coefficient between solder materials can be prevented by sealing the bonding portion of the chip using the solder materials. Further, since oxidation of the bonding portion is prevented by blocking the contact with the outside, the chip packaging process can be performed without an additional process of filling an inert gas into the internal space wherein the chip is mounted.
Abstract:
Provided is a heat sink for a chip mounting substrate in which a heat dissipation material is embedded. The heat sink includes: an accommodation portion configured to accommodate a substrate whereon a chip is mounted or to be mounted, and support or fix the accommodated substrate; and a heat dissipation portion configured to insulate the accommodated substrate, and dissipate heat generated from the substrate or the chip mounted on the substrate to an outside through a heat dissipation material contained in the heat dissipation portion. Accordingly, since the heat sink for a chip mounting substrate in which a heat dissipation material is embedded is manufactured by injection molding, a manufacturing process can be simplified. Further, since the heat sink of a single structure is used, a TIM bonding layer for bonding the substrate and the heat sink is not required, and an electrical insulating layer formed by anodizing an upper surface of the heat sink for electrical insulation between the substrate and the heat sink is not required, and thus the structure can be simplified.
Abstract:
Provided is a method of mounting a chip. The method includes: forming a bump at one surface of a cavity formed concavely in an inner direction of a substrate; performing a coining process to flatten a surface of the bump; coating a solder material on the bump subjected to the coining process; and bonding a chip and the bump by melting the solder material, wherein an electrode portion or a metal portion is formed on a bottom of the chip. For a metal substrate according to the present invention, wherein a vertical insulating layer is included, since the electrode portion of the chip and the electrode portion of the substrate have to be electrically connected, the metal substrate is bonded to the electrode portion of the chip using the bump additionally formed on the metal substrate, so the heat generated in the chip can be rapidly transferred to the substrate, and the junction temperature of the chip can be decreased, thereby enhancing the light efficiency and the. In addition, cracking due to the difference of thermal expansion coefficient between solder materials can be prevented by sealing the bonding portion of the chip using the solder materials. Further, since oxidation of the bonding portion is prevented by blocking the contact with the outside, the chip packaging process can be performed without an additional process of filling an inert gas into the internal space wherein the chip is mounted.
Abstract:
The present invention relates to an optical device array substrate having a built-in heat dissipating structure, and to a method for manufacturing same, wherein the optical device array substrate itself is used as a heat sink and a coupling hole is formed at the bottom of the substrate to have a heat dissipating rod coupled thereto. The optical device array substrate having a built-in heat dissipating structure of the present invention consists essentially of: an optical device array substrate having a plurality of optical devices arranged on the top surface thereof and a plurality of coupling holes formed in the bottom surface thereof; and rod-shaped heat dissipating rods that have coupling projections formed on upper ends thereof, and are coupled to each of the coupling holes. In the above-described structure, the coupling holes are threaded, and the coupling projections are also threaded so as to be screw-coupled to the coupling holes. The coupling holes are formed having a downwardly narrowing taper, and the coupling projections are formed having a downwardly narrowing taper so as to be precisely coupled with the coupling holes even when in a contracted state under sub-freezing temperatures. The surfaces of the heat dissipating rods are characterized in that insulation coating layers are formed thereon and not on the coupling projections. A portion of the insulation coating layers on some of the heat dissipating rods may be removed to function as electrodes.
Abstract:
A probe head and a probe card having the same are provided. The probe head includes a plurality of guide plates each having a guide hole, wherein each of the guide plates has a shape in which a plurality of layers are stacked, and each of the guide plates includes: a first guide layer provided at a lowermost side thereof, and having a first guide hole; and a second guide layer provided at an uppermost side thereof, and having a second guide hole, wherein a side wall of the first guide hole and a side wall of the second guide hole are not provided on the same vertical line.
Abstract:
Proposed are a probe head for testing, through a probe, a pattern formed on a wafer, and a probe card having the same. More particularly, proposed are a probe head in which formation of a guide hole into which a probe is inserted and insertion of the probe therein are facilitated, and a probe card having the same.