Abstract:
Methods and apparatus for dynamic packet mapping. A method is provided for mapping metric data to produce a decodable packet associated with a channel. The method includes obtaining a channel identifier associated with metric data, determining an available buffer from a plurality of buffers based on the channel identifier, writing the metric data to the available buffer, detecting when a decodable packet is formed in a selected buffer of the plurality of buffers, and outputting the decodable packet from the selected buffer. An apparatus includes a plurality of buffers and mapping logic that is configured to obtain a channel identifier associated with metric data, determine an available buffer based on the channel identifier, write the metric data to the available buffer, detect when a decodable packet is formed in a selected buffer, and output the decodable packet from the selected buffer.
Abstract:
Techniques for performing IFFT pipelining are described. In some aspects, the pipelining is achieved with a processing system having a memory with a first, second and third sections, an encoder configured to process data in each of the first, second and third memory sections in a round robin fashion, an IFFT configured to process the encoded data in each of the first, second, and third sections in a round robin fashion, and a post-processor configured to process the IFFT processed data in each of the first, second and third memory sections in a round robin fashion.
Abstract:
A system and method are provided for generating bit log likelihood ratio (LLR) values for two-layered Quadrature Phase-Shift Keying (QPSK) turbo decoding in a wireless communications user terminal (UT). The method includes receiving a two-layered QPSK signal with an energy ratio that is unknown, but typically defined as either k1 2 or k2 2 . The method selects a mismatched energy ratio (k