Abstract:
A computing device of a peer-to-peer group for a wireless communication protocol may determine that a peer-to-peer connection for the group transports an application flow sourced by a Group Owner to a client of the Group Owner. The computing devices of the group select the client that receives the application flow sourced by the Group Owner to be a new Group Owner for the group. As a consequence, the computing device of the group that receives the application flow is the new Group Owner and, as a result, the Group Owner for the group receives the application flow whereas prior to the selection of the new Group Owner the Group Owner transmitted the application flow.
Abstract:
Methods and apparatuses are described for asynchronous communications in a sensor network. An indication of a receiving opportunity can be transmitted by a sensor device. The sensor device can then provide the receiving opportunity based at least in part on transmitting the indication, and disable communication resources at the sensor device for a duration of a sleep time following the receiving opportunity. An upstream node can generate information for communicating to a sensor device, receive the indication of the receiving opportunity from the sensor device, and transmit the information to the sensor device during the receiving opportunity based at least in part on receiving the indication.
Abstract:
The present disclosure provides techniques for configuring the utilization of request-to-send/clear-to-send (RTS/CTS) protocol procedures based on varying conditions at the STA. For example, an AP may identify one or more conditions, when satisfied, may trigger the STA to either enable or disable uplink (UL) transmissions associated with a RTS/CTS protocol procedure. In some aspects, an AP may determine a transmit opportunity (TXOP) threshold for an STA and may determine whether to broadcast a message having the TXOP threshold to multiple STAs including the STA or unicast the message to the STA. An STA may receive a message from an AP having a TXOP threshold and may replace, based on an indication in the received message, a current TXOP threshold in the STA with the TXOP threshold in the received message. The STA may transmit an UL RTS frame in response to a determination that a planned TXOP duration satisfies the TXOP threshold.
Abstract:
The present disclosure provides techniques for configuring the utilization of request-to-send/clear-to-send (RTS/CTS) protocol procedures based on varying conditions at the STA. For example, an AP may identify one or more conditions, when satisfied, may trigger the STA to either enable or disable uplink (UL) transmissions associated with a RTS/CTS protocol procedure. In some aspects, an AP may determine a transmit opportunity (TXOP) threshold for an STA and may determine whether to broadcast a message having the TXOP threshold to multiple STAs including the STA or unicast the message to the STA. An STA may receive a message from an AP having a TXOP threshold and may replace, based on an indication in the received message, a current TXOP threshold in the STA with the TXOP threshold in the received message. The STA may transmit an UL RTS frame in response to a determination that a planned TXOP duration satisfies the TXOP threshold.
Abstract:
Systems and methods are disclosed that may provide for selective multi-user uplink (UL) of data for wireless devices. For example, a first wireless device may request permission to initiate a UL transmission to a second wireless device. The first wireless device may then receive, from the second wireless device, permission to initiate the UL transmission according to a multi-user (MU) UL protocol, determine a threshold duration for the UL transmission, and transmit UL data to the second wireless device according to the MU UL protocol and the threshold duration.
Abstract:
Methods, systems, and devices are described for wireless communications. A network may employ additional contention based parameters to support MU transmissions and to communicate to other devices a duration that protects MU transmission. For example, a first device may transmit a first message to reserve a subband of shared spectrum. The first message may be addressed to multiple devices and may indicate a channel access deferral duration to other devices within transmission range. The non-addressed devices may refrain from accessing the channel for an indicated duration. The addressed devices that receive the first message may respond to the first message with a second message, which may also be used to reserve the channel. The second message may additionally be used to identify those devices that received the first message. The first device may generate a trigger message based on the received second messages.
Abstract:
A user terminal for multiple-user wireless communication is provided, comprising a transmit buffer configured to store uplink data for transmission. The user terminal comprises a processor configured to generate a request to transmit frame in response to uplink data being present in the transmit buffer, and initiate a transmit timer for determining when to transmit the request to transmit frame. The user terminal comprises a transmitter configured to transmit the request to transmit frame when the transmit timer expires or when the uplink data present in the transmit buffer exceeds a threshold amount. The user terminal comprises a receiver configured to receive a clear to transmit frame from an access point based on the transmitted request to transmit frame. The transmitter is further configured to transmit the uplink data present in the transmit buffer, concurrently with at least one other user terminal transmitting uplink data, to the access point at a specified time based on receiving the clear to transmit frame addressed to the user terminal.
Abstract:
Techniques are described for controlling power consumption in a peer-to-peer communication system. In accordance with various examples, the techniques include determining a power save mode of a first node, determining a power save mode of a second node, determining a category of data connection between the first node and the second node, and adjusting a power save parameter of the first node based at least in part on the power save mode of the first node, the power save mode of the second node, and the category of data connection.
Abstract:
The disclosure generally relates to a low-cost and low-power smart parking system, and in particular, to forming a multi-hop wireless mesh network that can be used to estimate an occupancy map at a parking facility. The mesh network may be formed according to messages that are broadcasted from wireless identity transceivers corresponding to vehicles parked at the parking facility and include unique identifiers assigned to the broadcasting wireless identity transceivers and unique identifiers in any messages that the broadcasting wireless identity transceivers receive, whereby an occupancy map at the parking facility can be estimated according to the formed mesh network and a known physical layout associated with the parking facility. Furthermore, the broadcasted messages can be used to provide various other parking functions (e.g., contacting vehicle owners, directing drivers to available spaces, assisting with locating parked vehicles, etc.).
Abstract:
Various aspects provide for receiving identity information from a station (STA) that identifies the STA as a sensor-type STA, determining whether communication attributes of the STA correlates with communication attributes expected for a sensor-type STA, and determining that the identity information received from the STA is false when the one or more communication attributes of the STA is uncorrelated with the one or more communication attributes expected for a sensor-type STA. Additional aspects provide for initiating one or more remedial actions upon determining that the identity information is false. The communication attributes may pertain to packet size, inter-arrival time, and/or inter-arrival time variance. The remedial actions may include blocking a future communication with the STA, communicating a warning message to the STA, and/or assigning the STA to a particular access window. Communications by the STA may comply with aspects of Institute of Electrical and Electronics Engineers (IEEE) 802.11ah.