Abstract:
A method for forming a package-on-package (POP) structure is disclosed. The method includes placing a post on a first integrated circuit (IC) package such that a solder coating disposed on a first surface of the post is between the post and a second surface of the first IC package. The post is placed at a distance from a die along a particular axis of the die. The particular axis is substantially parallel to the second surface. The first IC package includes the die. The method also includes forming a conductive path between a second IC package and the first IC package via the post and a solder bump. The solder bump is disposed between the post and the second IC package.
Abstract:
A package substrate that includes a first portion and a redistribution portion. The first portion is configured to operate as a capacitor. The first portion includes a first dielectric layer, a first set of metal layers in the dielectric layer, a first via in the dielectric layer, a second set of metal layers in the dielectric layer, and a second via in the dielectric layer. The first via is coupled to the first set of metal layers. The first via and the first set of metal layers are configured to provide a first electrical path for a ground signal. The second via is coupled to the second set of metal layers. The second via and the second set of metal layers are configured to provide a second electrical path for a power signal. The redistribution portion includes a second dielectric layer, and a set of interconnects.
Abstract:
A package substrate is provided that includes a core substrate and a capacitor embedded in the core substrate including a first side. The capacitor includes a first electrode and a second electrode disposed at opposite ends of the capacitor. The package also includes a first power supply metal plate extending laterally in the core substrate. The first power supply metal plate is disposed directly on the first electrode of the capacitor from the first side of the core substrate. A first via extending perpendicular to the first metal plate and connected to the first power supply metal plate from the first side of the core substrate.
Abstract:
An apparatus includes a two-terminal MLCC. The two-terminal MLCC includes a conductive layer, where the conductive layer includes at least one slot. The apparatus may also include a second conductive layer that includes at least one slot and an insulating layer that separates the two conductive layers. In one example, a first (e.g., positive) terminal of the two-terminal MLCC is formed by a first set of plates, where each plate in the first set includes at least one slot. A second (e.g., negative) terminal of the two-terminal MLCC is formed by a second set of plates, where each plate in the second set also includes at least one slot. The first set of plates and the second set of plates are interleaved, and each pair of plates is separated by an insulating layer.
Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first interconnect coupled to the substrate, and a second interconnect surrounding the first interconnect. The second interconnect may be configured to provide an electrical connection to ground. In some implementations, the second interconnect includes a plate. In some implementations, the integrated device also includes a dielectric material between the first interconnect and the second interconnect. In some implementations, the integrated device also includes a mold surrounding the second interconnect. In some implementations, the first interconnect is configured to conduct a power signal in a first direction. In some implementations, the second interconnect is configured to conduct a grounding signal in a second direction. In some implementations, the second direction is different from the first direction. In some implementations, the integrated device may be a package-on-package (PoP) device.
Abstract:
One feature pertains to a multi-chip package that includes a substrate and an electromagnetic interference (EMI) shield coupled to the substrate. At least one integrated circuit is coupled to a first surface of the substrate. The EMI shield includes a metal casing configured to shield the package from radio frequency radiation, a dielectric layer coupled to at least a portion of an inner surface of the metal casing, and a plurality of signal lines. The signal lines are coupled to the dielectric layer and electrically isolated from the metal casing by the dielectric layer. At least one other integrated circuit is coupled to an inner surface of the EMI shield, and at least a portion of the inner surface of the EMI shield faces the first surface of the substrate. The signal lines are configured to provide electrical signals to the second circuit component.
Abstract:
An integrated device package includes a package substrate, a die coupled to the package substrate, an encapsulation layer encapsulating the die, and at least one sheet of electrically conductive material configured to operate as an inductor. The sheet of electrically conductive material is at least partially encapsulated by the encapsulation layer. The sheet of electrically conductive material is configured to operate as a solenoid inductor. The sheet of electrically conductive material includes a first sheet portion, a second sheet portion coupled to the first sheet portion, where the first sheet portion and the second sheet portion form a first winding of the inductor, a first terminal portion coupled to the first sheet portion, and a second terminal portion coupled to the second sheet portion. The first sheet portion is formed on a first level of the sheet. The second sheet portion is formed on a second level of the sheet.
Abstract:
A semiconductor package according to some examples of the disclosure may include a base (110) with a first redistribution layer (150) on one side, first (120) and second (130) side-by-side die attached to the base on an opposite side from the first redistribution layer, an interposer (140) attached to active sides of the first and second die to provide an interconnection between the first and second die, a plurality of die vias (180,181) extending from the first and second die to a second redistribution layer (170) on a surface of the package opposite the first redistribution layer, and a plurality of package vias (182) extending through the package between the first and second redistribution layers.
Abstract:
An integrated device package includes a package substrate, a die coupled to the package substrate, an encapsulation layer encapsulating the die, and at least one sheet of electrically conductive material configured to operate as an inductor. The sheet of electrically conductive material is at least partially encapsulated by the encapsulation layer. The sheet of electrically conductive material is configured to operate as a solenoid inductor. The sheet of electrically conductive material includes a first sheet portion, a second sheet portion coupled to the first sheet portion, where the first sheet portion and the second sheet portion form a first winding of the inductor, a first terminal portion coupled to the first sheet portion, and a second terminal portion coupled to the second sheet portion. The first sheet portion is formed on a first level of the sheet. The second sheet portion is formed on a second level of the sheet.