Abstract:
Methods and apparatus for controlling an equivalent-series resistance (ESR) of a capacitor are provided. An exemplary apparatus includes a substrate having a land side, the capacitor mounted on the land side of the substrate and having both the ESR and terminals, a resistive pattern coupled to the terminals, and a plurality of vias coupled to the resistive pattern. The resistive pattern is configured to control the ESR. The resistive pattern can be formed of a resistive paste. The resistive pattern can be formed in a substantially semicircular shape having an arc ranging from substantially 45 degrees to substantially 135 degrees. The capacitor can be a surface mount device. The resistive pattern can be formed in a shape of a land-side capacitor mounting pad, a via, or both.
Abstract:
A package on package (PoP) device includes a first package and a second package. The first package includes a first package substrate, a die coupled to the first package substrate, an encapsulation layer located on the first package substrate, and an inter package connection coupled to the first package substrate. The inter package connection is located in the encapsulation layer. The inter package connection includes a first interconnect configured to provide a first electrical path for a reference ground signal, and a second set of interconnects configured to provide at least one second electrical path for at least one second signal. The first interconnect has a length that is at least about twice as long as a width of the first interconnect. The second set of interconnects is configured to at least be partially coupled to the first interconnect by an electric field.
Abstract:
A semiconductor package according to some examples of the disclosure may include a base (110) with a first redistribution layer (150) on one side, first (120) and second (130) side-by-side die attached to the base on an opposite side from the first redistribution layer, an interposer (140) attached to active sides of the first and second die to provide an interconnection between the first and second die, a plurality of die vias (180,181) extending from the first and second die to a second redistribution layer (170) on a surface of the package opposite the first redistribution layer, and a plurality of package vias (182) extending through the package between the first and second redistribution layers.
Abstract:
Flexible film electrical-test substrates with at least one conductive contact post for integrated circuit (IC) bump(s) electrical testing, and related methods and testing apparatuses are disclosed. The backside structure of an electrical-test substrate comprises a flexible dielectric film structure. One or more fine-pitched conductive coupling posts are formed on conductive pads disposed on a front side of the flexible dielectric film structure through a fabrication process. A first pitch of the conductive coupling post(s) in the flexible dielectric film structure is provided to be the same or substantially the same as a second pitch of one or more bumps in an IC, such as die or interposer (e.g., forty (40) micrometers (μm) or less). This allows the conductive coupling post(s) to be placed into mechanical contact with at least one bump of the IC, point-by-point, during an electrical test to electrically testing of the IC.
Abstract:
A passive discrete device (400) includes a first asymmetric terminal (410A) and a second asymmetric terminal (410B). The passive discrete device (400) further includes first internal electrodes (420A) extended to electrically couple to a first side and a second side of the first asymmetric terminal (410A). The passive discrete device (400) also includes second internal electrodes (420B) extended to electrically couple to a first side and a second side of the second asymmetric terminal (420B).
Abstract:
A substrate that includes a first dielectric layer and a capacitor embedded in the first dielectric layer. The capacitor includes a first terminal, a second terminal, and a third terminal. The second terminal is laterally located between the first terminal and the third terminal. The capacitor also includes a second dielectric layer, a first metal layer and a second metal layer. The first metal layer is coupled to the first and third terminals. The first metal layer, the first terminal, and the third terminal are configured to provide a first electrical path for a first signal. The second metal layer is coupled to the second terminal. The second metal layer and the second terminal are configured to provide a second electrical path for a second signal.
Abstract:
An integrated device package includes a base portion, a redistribution portion, a first die and a second die. The base portion includes a photo imageable layer, a bridge that is at least partially embedded in the photo imageable layer, and a set of vias in the photo imageable layer. The bridge includes a first set of interconnects comprising a first density. The set of vias includes a second density. The redistribution portion is coupled to the base portion. The redistribution portion includes at least one dielectric layer, a second set of interconnects coupled to the first set of interconnects, and a third set of interconnects coupled to the set of vias. The first die is coupled to the redistribution portion. The second die is coupled to the redistribution portion, where the first die and the second die are coupled to each other through an electrical path that includes the bridge.
Abstract:
Some novel features pertain to an integrated device package that includes a die, an electromagnetic (EM) passive device, an encapsulation layer covering the die and the EM passive device, and a redistribution portion coupling the die and the EM passive device. In some implementations, the EM passive device includes an electromagnetic (EM) passive device. The EM passive device includes a base layer, a via traversing the base layer, a pad coupled to the via, and at least redistribution layer configured to operate as electromagnetic (EM) passive component, where the redistribution layer is coupled to the pad. The redistribution portion of the EM passive device includes at least one redistribution layer that is configured to electrically couple the die to the EM passive device. The redistribution portion includes at least one redistribution layer that is configured as an electromagnetic (EM) shield.
Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first interconnect coupled to the substrate, and a second interconnect surrounding the first interconnect. The second interconnect may be configured to provide an electrical connection to ground. In some implementations, the second interconnect includes a plate. In some implementations, the integrated device also includes a dielectric material between the first interconnect and the second interconnect. In some implementations, the integrated device also includes a mold surrounding the second interconnect. In some implementations, the first interconnect is configured to conduct a power signal in a first direction. In some implementations, the second interconnect is configured to conduct a grounding signal in a second direction. In some implementations, the second direction is different from the first direction. In some implementations, the integrated device may be a package-on-package (PoP) device.
Abstract:
A fan-out wafer level package structure may include a multilayer redistribution layer (RDL). The multilayer RDL may be configured to couple with terminals of an embedded capacitor. The multilayer RDL may include sections with fewer layers than other sections of the multilayer RDL according to a selected equivalent series resistance (ESR) control pattern.