Abstract:
An integrated circuit (IC) is disclosed herein for adaptive power multiplexing with a power distribution network. In an example aspect, the integrated circuit includes a first power rail, a second power rail, and a load power rail. The integrated circuit also includes multiple power-multiplexer tiles and power-multiplexer control circuitry. The multiple power-multiplexer tiles are coupled in series in a chained arrangement and configured to jointly perform a power-multiplexing operation. Each power-multiplexer tile is configured to switch between coupling the load power rail to the first power rail and coupling the load power rail to the second power rail. The power-multiplexer control circuitry is configured to control a direction of current flow to prevent cross-conduction between the first power rail and the second power rail during the power-multiplexing operation.
Abstract:
A series of current repeaters with localized feedback is provided. Each current that precedes a subsequent current repeater in the series is configured to receive a feedback current from the subsequent current repeater and generate an error signal accordingly with a differential amplifier so as to reduce current repetition errors that would otherwise result from an offset voltage in the differential amplifier.
Abstract:
A context aware system, for use in a mobile device, includes a context change detector (CCD) coupled to a context classifier (CCL). The CCD is configured to receive sensor data and to detect a change in a current context state of the mobile device based on the received sensor data. The CCL is configured to transition from a low power consumption mode to a normal power consumption mode in response to the CCD detecting the change in the current context state. The CCL is further configured to determine a next context state of the mobile device while in the normal power consumption mode.
Abstract:
An apparatus for noninvasive medical ultrasonography includes one or more ultrasonic transducers, one or more inertial sensors, one or more optical sensors, and a processor communicatively coupled with the ultrasonic transducers, the inertial sensors and the optical sensors. The processor is configured to estimate a position of the apparatus based on a combination of signals received from the ultrasonic transducers, the inertial sensors and the optical sensors.