Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for increasing decoding performance and/or reducing decoding complexity. A transmitter may divide data of a codeword into two or more sections and then calculate redundancy check information (e.g., a cyclic redundancy check or a parity check) for each section and attach the redundancy check information to the codeword. A decoder of a receiver may decode each section of the codeword and check the decoding against the corresponding redundancy check information. If decoding of a section fails, the decoder may use information regarding section(s) that the decoder successfully decoded in re-attempting to decode the section(s) that failed decoding. In addition, the decoder may use a different technique to decode the section(s) that failed decoding. If the decoder is still unsuccessful in decoding the section(s), then the receiver may request retransmission of the failed section(s) or of the entire codeword.
Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for enhanced decoding, for example, by providing a multi-phase tail biting convolutional code (TBCC) decoding algorithm. An exemplary method generally includes obtaining, via a wireless medium, a codeword encoded with a TBCC encoding scheme, generating metrics for candidate paths through trellis stages of a decoder, propagating information from at least one of the trellis stages to a later trellis stage, while generating the metrics, selecting a set of the candidate paths based on the propagated information, and decoding the encoded codeword by evaluating the selected set of candidate paths based, at least in part, on the generated metrics. Other aspects, embodiments, and features are claimed and described.
Abstract:
Certain aspects of the present disclosure provide techniques for domain adaptation. An input tensor comprising channel state information (CSI) for a wireless signal is determined, where each channel in the input tensor corresponds to a respective degree of freedom (DoF) in the wireless signal. A domain-adapted tensor is generated by processing the input tensor using a domain-adaptation network comprising, for each respective DoF in the wireless signal, a respective convolution path. The domain-adapted tensor is provided to a neural network trained for position estimation.
Abstract:
In one aspect of the present disclosure, a method includes: determining a number of loops for a convolution layer of an elastic bottleneck block; for each loop of the number of loops: loading a loop-specific set of convolution weights; performing a convolution operation using the loop-specific set of convolution-weights; and storing loop-specific convolution results in a local memory; and determining an output of the convolution layer based on a summation of loop-specific convolution results associated with each loop of the number of loops.
Abstract:
Embodiments described herein relate to a method, comprising: receiving input data at a convolutional neural network (CNN) model; generating a factorized computation network comprising a plurality of connections between a first layer of the CNN model and a second layer of the CNN model, wherein: the factorized computation network comprises N inputs, the factorized computation network comprises M outputs, and the factorized computation network comprises at least one path from every input of the N inputs to every output of the M outputs; setting a connection weight for a plurality of connections in the factorized computation network to 1 so that a weight density for the factorized computation network is
Abstract:
Wireless communications systems and methods are introduced. A wireless communication device may arrange a first encoded information block including a first sub-block having a first bit location and a second sub-block having a second bit location. The second bit location is after the first bit location. The wireless communication device may also position the first location earlier in a decoding order of a receiving second wireless communication than the second bit location. The wireless communication device may transmit the first and second sub-blocks as an encoded information block to the second wireless communication device.
Abstract:
Methods, systems, and devices for wireless communication are described. The method, systems, and devices may include receiving a plurality of sets of input bits associated with respective transmission symbol periods at an encoder of a transmitting device, the plurality of sets of input bits associated with a single input vector to be encoded into a single codeword. The encoder may process the plurality of sets of input bits to generate a plurality of sets of output bits associated with respective transmission symbol periods, and output a first of the plurality of sets of output bits associated with a first of the plurality of sets of input bits prior receiving a second of the plurality of sets of input bits, the second of the plurality of sets of input bits being received at the encoder subsequent to the first of the plurality of sets of input bits.
Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for increasing decoding performance and/or reducing decoding complexity. An exemplary method generally includes receiving, via a wireless medium, a codeword encoded using a tailless convolutional code (TLCC) with a known start state, evaluating a set of decoding candidate paths through a trellis decoder that originate at the known start state of the TLCC, performing, for each of a plurality of the decoding candidate paths, a back trace from a respective end state to the known start state, and selecting one of the decoding candidate paths based, at least in part, on path metrics generated while performing the back trace. A TLCC is characterized by being encoded without trellis termination/a tail sequence resulting in an unknown end state.
Abstract:
An apparatus may utilize an air interface to transmit and/or receive a subframe having a data portion and a control channel that is at least partly embedded within the data portion. The control channel may include one or more pilot tones. The control channel may include an override indicator. The override indicator may indicate that data previously scheduled for transmission in the subframe is overridden by other data having a higher priority. The override indicator may indicate a puncturing of resource elements in the data portion of the subframe to include other data having a priority higher than data previously scheduled for transmission in the subframe. The control channel may include a modulation indicator when the subframe is included in a multi-user multiple-input multiple-output (MU-MIMO) transmission. The modulation indicator may indicate information corresponding to a modulation of another apparatus that is included in the MU-MIMO transmission.
Abstract:
Systems and techniques are described herein for performing optical flow estimation between one or more frames. For example, a process can include determining a subset of pixels of at least one of a first frame and a second frame, and generating a mask indicating the subset of pixels. The process can include determining, based on the mask, one or more features associated with the subset of pixels of at least the first frame and the second frame. The process can include determining optical flow vectors between the subset of pixels of the first frame and corresponding pixels of a second frame. The process can include generating an optical flow map for the second frame using the optical flow vectors.