Abstract:
Methods, systems, and devices for facilitating mobility between flexible bandwidth systems and other bandwidth systems are provided. These tools and techniques that provide mobility between different bandwidth systems may facilitate supporting circuit-switched (CS) services, such as CS voice services. Some embodiments provide for determining flexible bandwidth capable devices, such as user equipment. Some embodiments involve core network redirection where a core network may direct the handling of circuit-switched services when a flexible bandwidth system does not support the CS services. Some examples provide for radio access network determined handling of CS services when a flexible bandwidth system may not support the CS services. Some embodiments provide for transitioning to a flexible bandwidth system. Some embodiments provide for transitioning from flexible bandwidth systems to non-flexible bandwidth systems that have no support for some or all CS services, other flexible bandwidth systems, and/or systems that natively support CS voice services.
Abstract:
Methods, systems, and devices for utilizing flexible bandwidth carriers for small cells are provided. Bandwidth scaling factor(s) for a small cell may be determined. A flexible bandwidth carrier may be generated for the small cell utilizing the bandwidth scaling factor. Some embodiments provide assistance with active hand-in due to more available PN offsets in the flexible bandwidth domain. Some embodiments enhance small cell discovery with high bandwidth scaling factor beacon-like small cells with little more power than that corresponding to the same power spectral density for normal bandwidth small cell. Some embodiments reduce the interference caused by small cell to macrocell users using an adaptive bandwidth scaling factor for small cells based on number of users supported and their traffic demand, to control the extent of overlap the macrocell has with small cell and the interference to macrocell mobiles. Some embodiments utilize self-configuration for small cells utilizing flexible bandwidth channels.
Abstract:
Methods, systems, and devices are provided for dynamically adapting the bandwidth of flexible bandwidth carriers. Adapting the bandwidth of a flexible bandwidth carrier may be achieved through changing the scale factor of the flexible bandwidth signal. Information such as traffic patterns, interference measurements, etc., may be utilized to determine the adapted scaling factors. In macrocellular deployments, for example, dynamically adjusting the bandwidth of a flexible bandwidth system may be utilized in order to increase network capacity, mitigate interference caused to other carriers, avoid adjacent carrier interference, and/or save energy on the network. Traffic pattern and other information may also be utilized to dynamically adjust uplink and downlink bandwidths of a flexible bandwidth carrier, either jointly or independently.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
Methods, systems, and devices are disclosed for providing services, such as voice services, within flexible bandwidth systems. In general, the scaling of one or more aspects of a flexible bandwidth system may be compensated for through altering one or more aspects within a code domain. The tools and techniques may include scaling spreading factors (with rate matching tuning in some embodiments), multi-code transmission, code rate increases, AMR codec rate adjustments, and/or higher order modulation. Subframe decoding approaches for the reception scheme may also be utilized. These tools and techniques can be flexibly implemented on the mobile device and/or base station side. Some embodiments may also minimize the latency introduced by the transmission and/or reception process. Flexible bandwidths systems may utilize portions of spectrum that may be too big or too small to fit a normal bandwidth waveform.
Abstract:
Methods, systems, and devices for increasing reverse link throughput by coordination of multiple wireless systems using reverse link blanking are provided. Some embodiments involve utilizing the bandwidth of one carrier bandwidth that partially overlaps with the bandwidth of another carrier bandwidth. This overlap may create interference. Different indicators may be utilized to prompt a device, such as a mobile device, to coordinate reverse link transmission blanking on at least one of the carrier bandwidths to increase throughput for the other overlapping carrier bandwidth. For example, a base station may transmit such an indicator to the mobile device to prompt the transmission blanking. Some embodiments also include increasing transmission power for the overlapping carrier bandwidth during the transmission blanking of other carrier bandwidth. Some embodiments utilize flexible carrier bandwidths systems that may utilize portions of spectrum that may not be big enough to fit a normal bandwidth waveform.
Abstract:
Methods, systems, and devices for separating signaling data and traffic data onto separate carriers for wireless communications systems are provided. Some embodiments utilize flexible bandwidth that may utilize portions of spectrum that may not be big enough to fit a normal waveform through utilizing flexible waveforms. Flexible bandwidth systems may lead to reduced data rate on the signaling or other channels. Separating the signaling and the data traffic into different flexible bandwidth carriers so that assigned resources can be customized to different traffic patterns may address this issue. In some embodiments, the signaling data is received and/or transmitted over a first carrier separate from any other traffic data. For example, the signaling data may be received and/or transmitted over the first band carrier without any other traffic data. The traffic data and/or network data associated with the signaling data may be received and/or transmitted over a separate, second carrier.
Abstract:
Methods, systems, and devices are described for making scaling adjustments with respect to a fractional subsystem in a wireless communications system. To handle the effects of scaling associated with fractional bandwidth systems, different adjustments may be made to maintain certain quality of service (QoS) requirements, for example. Scaling adjustments may include identifying a scaling factor for the fractional subsystem and a parameter and/or a timer associated with the fractional subsystem. An adjustment associated with the parameter and/or timer may be determined based on the scaling factor. The adjustment may be applied with respect to the parameter and/or timer for at least a portion of the fractional subsystem or another portion of the wireless communications system.
Abstract:
Methods, systems, and devices are provided that may address problems to enabling a user equipment (UE) in connected mode on a normal bandwidth cell to make inter-frequency measurements on another normal bandwidth cell and a flexible bandwidth cell. Some embodiment utilize a set of compressed mode gap configurations for measuring both normal bandwidth and flexible bandwidth inter-frequency cells with the following modification for flexible bandwidth cells: reducing the coherent length used by the UE; using the same cell search parameters at the UE but modifying the compressed mode gap parameters to accommodate both normal bandwidth and flexible bandwidth cell search; and/or maintaining the compressed mode gap parameters but reducing the search window size during cell search coherent accumulation. Some embodiments may configure separate compressed mode measurements configuration for normal bandwidth and flexible bandwidth measurements.