Abstract:
A receive (Rx) chain of a wireless local area network (WLAN) transceiver may be used to assist a wireless wide area network (WWAN) transceiver in a user equipment (UE). A UE may use the WLAN Rx chain to autonomously scan and measure while the UE is connected to a first or home wireless network using its WWAN transceiver. When the UE is in a connected state, the WLAN Rx chain may be used to scan and take measurements for one or more second networks operated by a second wireless operator belonging to the same mobile virtual network operator (MVNO) as the first wireless network. In another example, the WLAN Rx chain may perform a set of inter-frequency reference signal time difference (RSTD) measurements based on observed time offsets between positioning reference signals (PRSs) from neighboring cells.
Abstract:
Aspects of the disclosure are directed to interference cancellation. A method of performing interference cancellation in a wireless communications device having a transmitter, a receiver, a coefficient controller and an analog interference cancellation (AIC) circuit includes utilizing the receiver for receiving a signal, wherein the received signal includes an interference signal within a spectral region; measuring the received signal to obtain a measurement of the interference signal within a guard region of the spectral region; and determining a set of coefficients based on the measurement of the interference signal within the guard region.
Abstract:
Methods, systems, and devices are described for mobility robustness optimization. A network may be organized into base station clusters, and mobility information may be exchanged within the cluster. Each base station may then receive statistics based on the collected information. In some examples the cluster mobility statistics are used to generate a handover transition matrix identifying a probability of a UE remaining with a target base station within the cluster for a threshold period following a handover from a source base station that is also within the cluster. Based on the cluster mobility statistics, the base station may determine that the probability of the UE remaining with the potential target base station for the threshold period is low. The base station may then select an alternative handover target. The base station may then adjust the mobility parameters of the UE in order to direct it to the alternative handover target.
Abstract:
Apparatus, methods, and computer program products providing power savings in Semi-Persistent Scheduling (SPS)-configured Voice over Long Term Evolution (VoLTE) with Connected State Discontinuous Reception (C-DRX) are provided. The apparatus may be a user equipment (UE). The UE receives a packet when the UE is in a persistent scheduling mode. The UE transmits a negative-acknowledgement (NACK) message when the packet is not successfully decoded. The UE refrains from transmitting an acknowledgement (ACK) message when the packet is successfully decoded. The UE may enter a power save state immediately after the packet is successfully decoded. The packet may be addressed to the UE in a unicast message. The packet may be received during an on-duration of a C-DRX cycle. The packet my include VoLTE downlink (DL) traffic. The packet may be received on a physical downlink shared channel (PDSCH).
Abstract:
A method of wireless communication includes communicating using a first radio based on a first radio technology; configuring a second radio based on a second radio technology different from the first radio technology to assist the first radio with a first-radio operation; and performing at least a portion of the first-radio operation at the second radio. The first-radio operation includes at least one of multiple subscriber identity module (SIM) page monitoring and page/data processing, higher order diversity data acquisition and processing, interference measurement and management, E-UTRAN cell global identifier (ECGI) determination and reporting, a reference signal time difference (RSTD) measurement, beacon detection for small cell identification, a minimization of drive test (MDT) measurement, and a speed estimation measurement. The first radio technology is a wireless wide area network (WWAN) technology and the second radio technology is a wireless local area network (WLAN) technology.
Abstract:
A method of performing interference cancellation in a communication device having a plurality of transceivers includes: detecting a co-existence issue between a first transceiver and a second transceiver of the plurality of transceivers; determining parameters of the co-existence issue; selecting the first transceiver for providing an input signal to an interference cancellation (IC) circuit; selecting the second transceiver for receiving an output signal from the IC circuit; configuring the IC circuit based on the parameters of the co-existence issue; and generating the output signal based on the input signal and the parameters to reduce interference caused by the first transceiver on the second transceiver.
Abstract:
Femtocell synchronization is disclosed, in which a femtocell transmits a request over an out-of-band (OOB) link to a proximate mobile device for synchronization assistance. In response to the request, the mobile device transmits an access probe to a serving macro base station. The femtocell detects the access probe and uses aiding information to decode the access probe to determine the timing and/or frequency information. The femtocell uses this timing and/or frequency information for its synchronization.
Abstract:
Method and system for femtocell positioning are disclosed. An apparatus (600) includes one or more processors (606, 608, 610), a femtocell positioning module (614) configured to determine position of a femtocell, and a memory (612) configured to store position of the femtocell. The femtocell positioning module (614), working with the one or more processors (606, 608, 610), includes logic configured to identify one or more wireless terminals and receive location information from the one or more wireless terminals via a first communication channel and determine position of the femtocell in accordance with the location information from the one or more wireless terminals.
Abstract:
Methods, systems, and devices for supporting voice communications in a wireless communications system are provided. Some embodiments utilize multiple code channels to transmit the voice frames. These embodiments include parallel multi-code embodiments, offset multi-code embodiments, and multi-user multi-code embodiments. Some embodiments utilize flexible carrier bandwidths systems that may utilize portions of spectrum that may not be big enough to fit a normal bandwidth waveform. Some embodiments transmit and receive a subset of subframes of voice frames received over flexible bandwidth code channels. In some embodiments, a subset of subframes based on a flexible bandwidth scaling factor of one or more flexible bandwidth code channels is transmitted. The receiver may decode the voice frame based on the received subset of subframes. An outer loop power control set-point may be adjusted to provide a predetermined frame error rate based on the number of transmitted subframes.
Abstract:
In an embodiment, a user equipment (UE) is maintained in a shared channel state (e.g., CELL_FACH, etc.) during a period of UE-traffic inactivity that exceeds a threshold inactivity period associated with transitions of the UE from the shared channel state to a dormant state (e.g., CELL_PCH or URA_PCH, etc.). While the UE is being maintained in the shared channel state, the UE receives a request to set-up a communication session. The UE transmits, in response to the received request, a message on a reverse-link shared channel to an access network to facilitate set-up of the requested communication session.