Abstract:
Techniques to detect whether or not a remote terminal is under the coverage of a repeater within a wireless communication network, which may be based on (1) a list of base stations expected to be received while under the repeater's coverage, (2) the characterized environment of the repeater, and/or (3) the propagation delays for a transmission received at the remote terminal. Additional ambiguity resulting from being under a repeater's coverage may also be accounted for and/or compensated by (1) discarding time measurements from repeated base stations, (2) adjusting the processing for position estimation to account for the additional ambiguity due to the repeater, (3) computing a series of position estimates based on multiple transmissions received from the same originating base station and selecting the best estimate, and/or (4) computing a series of position estimates based on multiple transmissions from multiple originating base stations and selecting the best estimate.
Abstract:
An electrical current (EC) manager module may assign a plurality of hardware elements of the PCD to one of two groups. The EC manager module may monitor individual electrical current levels of one of the groups as well as calculate an instantaneous electrical current level for the PCD based on a current charge status for the PCD. The EC manager module may then adjust operation of at least one hardware element to keep operation of the PCD below the calculated instantaneous electrical current level for the PCD. The EC manager module may estimate an electrical current level for one of the groups based on requests issued to hardware elements. The EC manager module may also compare the calculated instantaneous electrical current level to the monitored electrical current level. The calculated instantaneous electrical current level may be compared to minimum current levels listed in a table.
Abstract:
A communication system that allows multiple data applications to work simultaneously within a distributed execution environment in which only one IP address is assigned to the mobile system by an external wireless network. The mobile system comprises a wireless communication system with a first processing device (such as a cell phone or a network card) and a second device with another processor (such as a laptop computer or a personal digital assistant). The single IP address is assigned to the second processor, and all incoming external communications are stored in the second processor. In some embodiments the first processing device includes a filter; in other embodiments the second processing device includes a proxy for each processor. Additional processors can be connected to the mobile system by adding an additional filter or additional proxy.
Abstract:
Signal acquisition assistance data is obtained for receiving devices such as wireless position assisted location devices (208, 210) seeking signals from any source (B1-B10), such as satellite vehicles and base stations. The data may be obtained from previously acquired data, based upon evaluation of changes in parameters such as time and location that may jeopardize validity. In some cases the data may be adjusted for the changes in parameters. Refined data may be calculated by a receiver using partial measurements of signal sets, particularly if the acquisition assistance data provided by a remote entity includes more distinct parameters than have typically been provided. New data need not be obtained until the validity of previous data expires due to limitations upon temporal extrapolation using Doppler coefficients, unless mobile station movement that cannot be compensated is detected, and jeopardizes validity of the previous data.
Abstract:
Methods and apparatuses for the processing of false alarms in position determination. At least one embodiment of the present invention estimates and uses measurement false alarm probabilities in the position determination process. In one embodiment, the estimated measurement false alarm probabilities are combined to determine the reliability of the determined position solution or the reliability of the set of measurements as a collection. In one embodiment, the estimated measurement false alarm probabilities are used in the isolation and elimination of faulty measurements. For example, the traditional geometry based metric for identifying a faulty measurement is further weighted according to the measurement false alarm probabilities in order to determine the faulty measurement.
Abstract:
A method of and system for estimating a parameter of a local maxima or minima of a correlation function derived from a received signal . An interpolated local maxima or minima is determined. An interpolation offset is then derived, comprising a deviation between locations of the interpolated and sampled local maxima or minima of the function. An estimate of the parameter is derived from the interpolation offset.
Abstract:
A forward link repeater frequency watermarking (FLRFWM) system and method that enable accurate position location of mobile stations in areas where repeaters are present by watermarking repeated signals with repeater information. A repeater watermarks a forward link signal with a (unique or non-unique) fast frequency modulation waveform watermark every time a signal passes through the repeater. A mobile station detects and/or identifies the fast frequency watermark on the forward link signal to determine repeater information that aids the network position determination entity or mobile station position location system in determining position location using AFLT and/or A-GPS systems. A forward link fast frequency watermarking system described herein achieves minimal impact on FL, AFLT, and GPS performance, good detection, identification and false alarm probabilities, short time-to-detect/identify, and good detection/identification sensitivity.
Abstract:
Apparatus and methods of implementing code space search of received signals are described herein. A code space search is implemented as a searcher (220) that perform a subtask that is dynamically reconf igurable at each boundary of an initial integration time. Each particular subtask sets forth a programmabl configuration of coherent integration hypothesis that are performed during th initial integration time. The searcher stores the results of the coherent integration hypothesis in a first portion of memory. A search accelerator (250) operates on the initial integration results. The search accelerator can perform coherent integration of various frequency bins of different timing hypothesis, can generate energy values of the coherent integration results, and can generate a non-coherent energy summation. The energy values of the coherent integrations and non-coherent energy summations are stored in a second portion of memory. The ability to reconfigure the subtasks and accelerator operation provides flexibility in search space dimensions.
Abstract:
A method of and system for searching for position determination signals using a plurality of progressively more sensitive search modes comprising a first level mode, a second mode, and at least one higher level mode. If any of the search window parameters exceed prescribed limits, a first level search is performed, and the search window parameters are refined responsive to the ensuing search results so they are within the prescribed limits. Then, the second level search is performed, and measurements derived from the ensuing search results. If the measurements satisfy selected measurement sufficiency criteria, additional searching within the position fix attempt is avoided. If the measurements do not satisfy the selected measurement sufficiency criteria, a higher level, more sensitive search is performed.
Abstract:
Apparatus and methods of implementing code space search of received signals are described herein. A code space search is implemented as a searcher (220) that perform a subtask that is dynamically reconf igurable at each boundary of an initial integration time. Each particular subtask sets forth a programmabl configuration of coherent integration hypothesis that are performed during th initial integration time. The searcher stores the results of the coherent integration hypothesis in a first portion of memory. A search accelerator (250) operates on the initial integration results. The search accelerator can perform coherent integration of various frequency bins of different timing hypothesis, can generate energy values of the coherent integration results, and can generate a non-coherent energy summation. The energy values of the coherent integrations and non-coherent energy summations are stored in a second portion of memory. The ability to reconfigure the subtasks and accelerator operation provides flexibility in search space dimensions.