Abstract:
Aspects of the present disclosure provide apparatus and techniques that may be applied in systems that may help enable efficient communication between a base station (BS) and certain devices, such as wearable devices and/or machine type communication (MTC) user equipments (UEs), having a single receiver (RX) for long term evolution (LTE). An exemplary method, performed by a BS, generally includes receiving, from a UE, an indication of a category of the UE, wherein the category of the UE indicates at least one of: a maximum throughput supported by the UE or a number of layers supported by the UE; assuming a number of receivers at the UE based on the category of the UE; determining one or more transmit parameters based on the number of receivers of the UE; and communicating with the UE according to the one or more transmit parameters.
Abstract:
A method and apparatus for reducing frequency space from code space search is disclosed in a wireless network. The method and apparatus reduces the frequency space without compromising the probability of detection, so that user equipment can expedite system acquisition and reduce power consumption. To reduce the frequency space, the described aspects note that the power spectral density of the WCDMA signal is essentially flat within the channel bandwidth. By capturing in-phase quadrature samples and doing frequency domain analysis of the signal in bandwidth around the center frequency, to the described aspects can eliminate some channels from the WCDMA code space search during frequency scan.
Abstract:
The disclosure is directed to techniques for performing service signal searches with reduced power consumption when a wireless communication device is operating out of service. The techniques include placing the wireless communication device in a "deep sleep" mode when the wireless communication device is not in service. When operating in the deep sleep mode, the wireless communication device reduces power consumption by not looking for paging signals or searching for service signals. The wireless communication device then may periodically enter a wake-up period during which power consumption is increased to perform signal searches in one or more frequency bands. The wireless communication device returns to the deep sleep mode when the signal searches are unsuccessful.
Abstract:
For cell measurement, a wireless device categorizes cells whose identities are known to the device into multiple sets. The wireless device may obtain these cells from the system via signaling and/or detect these cells via searches. Different sets of cells may be associated with different levels of importance (e.g., for handoff), require different amounts of processing for measurements, and so on. Each set is associated with a particular measurement rate. Cells deemed to be more important (e.g., for handoff) are measured more frequently. Cells deemed to be less important and/or require more processing for measurements (e.g., cells with unknown timing) are measured less frequently. The wireless device performs searches and makes measurements for the cells in each set at the measurement rate selected for that set.
Abstract:
A method of producing a reliability metric for a parameter estimate derived from a signal using correlation analysis is described. The method begins by obtaining an indication of whether a non line of sight signal condition is present or likely. Responsive to one or both of these indications, the method derives a reliability metric for the parameter estimate. In one embodiment, the parameter estimate is an estimate of time of arrival (TOA) of the signal, and the reliability metric is root mean square error (RMSE) of the time of arrival estimate. This embodiment obtains an indication of whether a non line of sight signal condition is present or likely based on a measure of the strength of the correlation function at the peak thereof. The measure of the strength of the correlation function at the peak thereof may be energy per chip divided by total received power (E¿c?/I¿0?) or may simply be the raw energy of the correlation function at the peak. The RMSE metric which is computed in this embodiment varies inversely with the peak strength of the correlation function.
Abstract:
A method and apparatus for reducing frequency space from code space search is disclosed in a wireless network. The method and apparatus reduces the frequency space without compromising the probability of detection, so that user equipment can expedite system acquisition and reduce power consumption. To reduce the frequency space, the described aspects note that the power spectral density of the WCDMA signal is essentially flat within the channel bandwidth. By capturing in-phase quadrature samples and doing frequency domain analysis of the signal in bandwidth around the center frequency, to the described aspects can eliminate some channels from the WCDMA code space search during frequency scan.
Abstract:
A method of producing a reliability metric for a parameter estimate derived from a signal using correlation analysis is described. The method begins by obtaining an indication of whether a non line of sight signal condition is present or likely. Responsive to one or both of these indications, the method derives a reliability metric for the parameter estimate. In one embodiment, the parameter estimate is an estimate of time of arrival (TOA) of the signal, and the reliability metric is root mean square error (RMSE) of the time of arrival estimate. This embodiment obtains an indication of whether a non line of sight signal condition is present or likely based on a measure of the strength of the correlation function at the peak thereof. The measure of the strength of the correlation function at the peak thereof may be energy per chip divided by total received power (Ec/I0) or may simply be the raw energy of the correlation function at the peak. The RMSE metric which is computed in this embodiment varies inversely with the peak strength of the correlation function.
Abstract:
A terminal communicates with a first wireless network and obtains a list of cells in a second wireless network to measure. The terminal operates in a compressed mode and receives multiple transmission gap pattern sequences for different measurement purposes, e.g., RSSI measurements, BSIC identification, and BSIC re-confirmation. The terminal utilizes each transmission gap for its designated purpose or an alternate purpose. For each transmission gap, the designated purpose for the transmission gap is ascertained, and whether the transmission gap is usable for an alternate purpose is also determined based on at least one criterion. The transmission gap is used for the alternate purpose if the at least one criterion is satisfied and is used for the designated purpose otherwise. For example, a transmission gap designated for RSSI measurement may be used for BSIC identification, a transmission gap designed for BSIC identification or BSIC re-confirmation may be used for RSSI measurement, and so on.
Abstract:
A rake receiver finger assignor is configured to assign a rake receiver finger to a time offset between identified signal path time offsets in accordance with a concentration of identified signal paths from a transmitter to a rake receiver. In accordance with the exemplary embodiment, a number of identified signal paths having time offsets within a time window are observed to determine the concentration of signal paths identified by a path searcher. If the number of identified signal paths indicates a concentrated distribution of signal paths such as during a fat path condition, at least one rake finger is assigned between at a time offset between two identified signal paths.
Abstract:
Techniques for limiting cell reselection in response to a variable channel are disclosed. In one aspect, a measurement of received pilot power from a base station is used as an indication of channel quality. In another aspect, hysteresis is applied to limit cell reselection, wherein the hysteresis is greater in relatively higher quality channel environments and lower in relatively lower channel quality environments. Various other aspects are also presented. These aspects have the benefit of reducing cell reselection, thus increasing time spent in low-power mode, thereby reducing power consumption and increasing standby time.