Abstract:
Techniques to optimize access and mobility function (AMF) relocation in user equipments (UEs) with multiple subscriber identity modules (SIMs) are disclosed. A first SIM of the UE registers and establishes a protocol data unit (PDU) session with a first SIM. Subsequently, when the network triggers an AMF relocation, configuration update is performed to have the UE register again, this time to second AMF. The updated configuration is shared with a second SIM of the UE, which enables the second SIM to register directly with the second AMF.
Abstract:
A method for compressing a deep neural network includes determining a pruning ratio for a channel and a mixed-precision quantization bit-width based on an operational budget of a device implementing the deep neural network. The method further includes quantizing a weight parameter of the deep neural network and/or an activation parameter of the deep neural network based on the quantization bit-width. The method also includes pruning the channel of the deep neural network based on the pruning ratio.
Abstract:
Methods, systems, and devices for wireless communications are described that provide sequences of spreading codes and hopping patterns that may be used in non-orthogonal multiple access (NOMA) communications between a user equipment (UE) and a base station. A codebook of spreading codes and the associated hopping patterns may be systematically constructed by closed form formulas or look up table. The base station may receive multiple concurrent transmissions from multiple different UEs, and the sequences of spreading codes and hopping patterns, may be used to identify a particular UE of the multiple UEs.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may be configured to determine a priority indicator for an upcoming transmission between the UE and a base station and transmit the priority indicator to the base station. The base station may receive the priority indicator, determine a network condition, and may transmit control information for a downlink transmission. The control information may include an indication of a set of modulation and coding schemes to select from a plurality of sets of modulation and coding schemes and an index value for an entry in the selected set of modulation and coding scheme, where the indication is based on the priority indicator and a network condition. The UE may identify a combination of a modulation order and a code rate for the downlink transmission based on the indication of modulation and coding scheme table and the index value.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may determine to block puncture or to block shorten a set of transmitted bits of an adjusted fractally enhanced kernel polar code for a communication of an incremental redundancy (IR)-hybrid automatic repeat request (HARQ) process based at least in part on a code rate associated with the communication of the IR-HARQ process. The wireless communication device may generate the adjusted fractally enhanced kernel polar code for the communication based at least in part on determining to block puncture or to block shorten the set of transmitted bits. The wireless communication device may transmit the communication using the adjusted fractally enhanced kernel polar code. Numerous other aspects are provided.
Abstract:
A technique for hybrid automatic repeat request (HARQ) transmissions using low-density parity-check (LDPC) coding with self-decodable retransmissions is disclosed. Data is encoded using a low-density parity check code to obtain encoded data, where the encoded data includes systematic (or core) data and parity (or non-core) data. The encoded data is then stored in a buffer for transmission. A plurality of redundancy versions of the encoded data is then transmitted, wherein all redundancy versions of encoded data include core data, and each of the transmitted redundancy versions of the encoded data includes at least a different subset of the core data. The core data may be reordered prior to obtaining at least one of the different subsets of core data. Each of the transmitted redundancy versions of the encoded data includes sufficient core data to permit self-decodability of the transmission at a receiver.
Abstract:
Methods, systems, and devices for wireless communications are described. An encoder of a wireless device may receive a number of information bits and a block size for transmission. If the block size is not a power of two, the encoder may round the block size up to the nearest power of 2, generate a larger codeword, and puncture the excess bits. The punctured bits may affect a rate of polarization when generating a polar code, and sub-blocks with a high number of punctured bits may produce too few sufficiently polarized channels. The encoder may implement a capacity backoff when polar coding to identify a greater number of polarized channels. The encoder may assign information bits to sufficiently polarized channels of the greater number of polarized channels.
Abstract:
Methods, systems, and devices are described for adapting access timing parameters when using DSRC spectrum. A multi-mode device may adapt at least one access timing parameter while operating within the DSRC spectrum. The at least one access timing parameter may be adapted to provide priority to transmissions of DSRC devices using the DSRC spectrum. The multi-mode device may increase a duration of a short inter-frame spacing (SIFS) to be at least equal to a duration of a SIFS used by a DSRC device.
Abstract:
Methods, systems, and devices are described for opportunistically using at least a portion of a dedicated short range communications (DSRC) spectrum. A multi-mode device is operated outside of the DSRC spectrum. An activity level is detected on at least a portion of the DSRC spectrum, and it is determined whether to use at least the portion of the DSRC spectrum based at least in part on the detected activity level.
Abstract:
Paging congestion control in a wireless communications system is described. Various described methods and apparatus are well suited for use in a peer to peer wireless communications system, e.g., an ad hoc peer to peer wireless network in which decisions are made in a decentralized manner. Wireless terminals, e.g., mobile nodes, monitor other paging activities going on and make back-off, e.g., yielding, decisions with regard to paging based on the results of the monitoring. During a first time interval paging indicator signals are transmitted on paging indicator resources by devices intending to transmit paging signals. During a second time interval paging signals are transmitted on paging signaling resources. Monitored and processed detected paging indicator signals are used by a wireless terminal in deciding whether or not to transmit a paging indicator signal and/or a paging signal.