Abstract:
A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support formed on a substrate and a hinge that is held by the hinge support. A mirror plate is connected to the hinge via a contact, and the distance between the mirror plate and the hinge is determined according to desired maximum rotation angle of the mirror plate, the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate followed by forming the mirror plates, and another sacrificial layer is deposited on the mirror plates followed by forming the hinge supports. The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
A spatial light modulator is disclosed, along with a method for making such a modulator that comprises an array of micromirror devices. The center-to-center distance and the gap between adjacent micromirror devices are determined corresponding to the light source being used so as to optimize optical efficiency and performance quality. The micromirror device comprises a hinge support (218) formed on a substrate (210) and a hinge (22) that is held by the hinge support (218). A mirror plate (212) is connected to the hinge (222) via a contact (224), and the distance between the mirror plate (212) and the hinge (222) is determined according to desired maximum rotation angle of the mirror plate (212), the optimum gap and pitch between the adjacent micromirrors. In a method of fabricating such spatial light modulator, one sacrificial layer is deposited on a substrate (210) followed by forming the mirror plates (212), and another sacrificial layer is deposited on the mirror plates (212) followed by forming the hinge supports (218). The two sacrificial layers are removed via the small gap between adjacent mirror devices with spontaneous vapor phase chemical etchant. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
A method for processing microelectromechanical devices is disclosed herein. The method prevents the diffusion and interaction between sacrificial layers and structure layers of the microelectromechanical devices by providing selected barrier layers between consecutive sacrificial and structure layers.
Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate (10); providing a sacrificial layer (20) directly or indirectly on the substrate; providing one or more micromechanical structural layers (30) on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer (20), the first etch comprising providing an etchant gas and energizing (42) the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material.
Abstract:
A method is disclosed for forming a micromechanical device. The method includes fully or partially forming one or more micromechanical structures multiple times on first substrate (5a). A second substrate is bonded onto the first substrate so a to cover the multiple areas each having one or more micromechanical structures, so as to form a substrate assembly. The substrate assembly is then separated into individual dies, each die having the one or more micromechanical structures held on a portion (21) of the first substrate, with a portion of the second substrate bonded to the first substrate portion. Finally, the second substrate portion is removed from each die (3a-3d) to expose the one or more micromechanical structures on the first substrate portion. The invention is also directed to a method for forming a micromechanical device, including: forming one or more micromechanical structures in one or more areas on a first substrate; bonding caps onto the first substrate so as to cover the one or more areas each having one or more micromechanical structures, so as to form a substrate (10) assembly; after a period of time, removing the caps to expose the one or more micromechanical structures. During the period of time between bonding the caps and later removing the caps, the substrate assembly can be singulated, inspected, irradiated, annealed, die attached, shipped and/or stored.