Abstract:
A two-wire temperature transmitter performs thermocouple diagnostics on a thermocouple attached to the transmitter to determine if, and the extent to which, the thermocouple has degraded. Various methods of obtaining thermocouple resistance are also provided.
Abstract:
A temperature transmitter in a process control system includes a temperature sensor which senses temperature and provides a sensor output related to sensed temperature. An analog-to-digital converter coupled to the sensor output provides a digitized output related to the sensor output. A microprocessor receives the digitized output, compensates the digitized output and provides a temperature output. Comparison circuitry compares the sensor output to a first threshold and provides an inhibit signal to the microprocessor if the sensor is outside of the first threshold.
Abstract:
A positive temperature coefficient (PTC) resistance heater assembly is used in combination with an angle of attack vane to provide automatic means for maintaining the temperature of the vane at a level which will de-ice the vane. The heater assembly is embedded in a recess in the vane and is made up of a plurality of individual PTC resistors connected electrically and mechanically in parallel by flexible electrically conductive perforated strips which permit the individual resistors to move relative to each the other under thermal stress and which also permit the encapsulation of the resistors in a suitable thermally conductive, electrically oinsulative material that is sufficiently resilient to permit the individual resistors to expand and contract relative to the vane during use.
Abstract:
An air data sensor device, such as a pitot, total air temperature sensor, etc., includes an elongated probe having a sensor therein for sensing air flow parameters and a strut for positioning the probe in a desired position on an air vehicle. To avoid ice build-up on the device causing erroneous sensing of air flow parameters a substantially constant wattage electric resistive heater is provided in the probe for deicing. A PTC (positive temperature coefficient) resistive heater is disposed in the support at a location thermally isolated from the probe heater but in thermally conductive relationship to the external surface of the support. The PTC heater is connected in series with the probe heater and continuously varies heater power in response to the rate of heat dissipation at the external surface of the sensor device thereby preventing burn-out of the probe heater and erosion of the probe. A second constant wattage heater connected in parallel with the PTC heater is located within the probe and has a maximum rated power selected to insure that during conditions of minimum heat dissipation of the probe heater sufficient additional heat is supplied to the probe to perform the deicing function without raising the probe to damaging temperatures.
Abstract:
A two-wire field-mounted process device (16) with multiple isolated channels includes a channel that can be an input channel or an output channel. The given input or output channel can be coupled to multiple sensors or actuators (32, 34), respectively. The process device (16) is wholly powered by the two-wire process control loop (14). The process device (16) includes a controller (40) adapted to measure one or more characteristics of sensors (20, 22, 24, 26, 28, 30) coupled to an input channel (42, 44, 46) and to control actuators coupled to an output channel (48). The controller can be further adapted to execute a user generated control algorithm relating process input information with process output commands. The process device also includes a loop communicator (36) that is adapted to communicate over the two-wire loop.
Abstract:
PCT/US91/01210 A process transmitter (50) transmits a 4-20 mA current representing a sensed parameter to a loop (52) which energizes the transmitter (50). An output circuit (60) receives energization from the loop (52) and controls the 4-20 mA output as a function of a sensor data input. The output circuit (60) further generates a transformer driver output which also serves as a clock for isolated circuitry (106). A sensor circuit (82) generates a transformer driver output representing the sensed parameter. An isolation transformer (76) driven by the driver output excites the sensor circuit (82) and provides a clock reference as a function of the driver output oscillation to the sensor circuit (82). The isolation transformer (76) is a single coupling device which couples energization, clock reference, sensor data and programming data across an electrically insulating barrier between the output circuit (50) and the sensor circuit (82).
Abstract:
An air data sensor device, such as a pitot, total air temperature sensor, etc., includes an elongated probe having a sensor therein for sensing air flow parameters and a strut for positioning the probe in a desired position on an air vehicle. To avoid ice build-up on the device causing erroneous sensing of air flow parameters a substantially constant wattage electric resistive heater is provided in the probe for deicing. A PTC (positive temperature coefficient) resistive heater is disposed in the support at a location thermally isolated from the probe heater but in thermally conductive relationship to the external surface of the support. The PTC heater is connected in series with the probe heater and continuously varies heater power in response to the rate of heat dissipation at the external surface of the sensor device thereby preventing burn-out of the probe heater and erosion of the probe. A second constant wattage heater connected in parallel with the PTC heater is located within the probe and has a maximum rated power selected to insure that during conditions of minimum heat dissipation of the probe heater sufficient additional heat is supplied to the probe to perform the deicing function without raising the probe to damaging temperatures.
Abstract:
A process transmitter (50) transmits a 4-20 mA current representing a sensed parameter to a loop (52) which energizes the transmitter (50). An output circuit (60) receives energization from the loop (52) and controls the 4-20 mA output as a function of a sensor data input. The output circuit (60) further generates a transformer driver output which also serves as a clock for isolated circuitry (106). A sensor circuit (82) generates a transformer driver output representing the sensed parameter. An isolation transformer (76) driven by the driver output excites the sensor circuit (82) and provides a clock reference as a function of the driver output oscillation to the sensor circuit (82) . The isolation transformer (76) is a single coupling device which couples energization, clock reference, sensor data and programming data across an electrically insulating barrier between the output circuit (50) and the sensor circuit (82).