Abstract:
A method of forming nanocrystalline graphene according to an embodiment may include: arranging a substrate having a pattern in a reaction chamber; injecting a reaction gas into the reaction chamber, where the reaction gas includes a carbon source gas, an inert gas, and a hydrogen gas that are mixed; generating a plasma of the reaction gas in the reaction chamber; and directly growing the nanocrystalline graphene on a surface of the pattern using the plasma of the reaction gas at a process temperature. The pattern may include a first material and the substrate may include a second material different from the first material.
Abstract:
A graphene manufacturing apparatus includes a reaction chamber a substrate supporter configured to structurally support a substrate inside the reaction chamber; a plasma generator configured to generate a plasma inside the reaction chamber; a first gas supply configured to supply an inert gas into the reaction chamber at a first height from an upper surface of the substrate supporter in a height direction of the reaction chamber; a second gas supply configured to supply a carbon source into the reaction chamber at a second height from the upper surface of the substrate supporter in the height direction of the reaction chamber; and a third gas supply configured to supply a reducing gas into the reaction chamber, wherein the first to third gas supply units are disposed at different heights at a third height from the upper surface of the substrate supporter in the height direction of the reaction chamber.
Abstract:
Disclosed herein is a method of fabricating hexagonal boron nitride in which hexagonal boron nitride is epitaxially grown. A method of fabricating hexagonal boron nitride includes placing a catalytic metal in a chamber, the catalytic metal having a hexagonal crystal structure and having a lattice mismatch of 15% or less with hexagonal boron nitride (h-BN) in a chamber; and growing hexagonal boron nitride on the catalytic metal at a temperature of 800° C. or lower while supplying a nitrogen source and a boron source into the chamber.
Abstract:
Provided are a conductive composite structure for an electronic device, a method of preparing the conductive composite structure, an electrode for an electronic device including the conductive composite structure, and an electronic device including the conductive composite structure. The conductive composite structure may contain graphene and an organic composite layer including a conductive polymer having a work function of about 5.3 eV or lower, and has a sheet resistance deviation of about 10% or less.
Abstract:
Provided are a graphene-metal bonding structure, a method of manufacturing the graphene-metal bonding structure, and a semiconductor device including the graphene-metal bonding structure. According to example embodiments, a graphene-metal bonding structure includes: a graphene layer; a metal layer on the graphene layer; and an intermediate material layer between the graphene layer and the metal layer. The intermediate material layer forms an edge-contact with the metal layer from boundary portions of a material contained in the intermediate material layer that contact the metal layer.
Abstract:
A boron nitride layer and a method of fabricating the same are provided. The boron nitride layer includes a boron nitride compound and has a dielectric constant of about 2.5 or less at an operating frequency of 100 kHz.
Abstract:
A semiconductor device may include a first semiconductor layer including a first semiconductor material; a metal layer facing the first semiconductor layer and having conductivity; a 2D material layer between the first semiconductor layer and the metal layer; and a second semiconductor layer between the first semiconductor layer and the 2D material layer. The second semiconductor layer may include a second semiconductor material different from the first semiconductor material. The second semiconductor layer and the 2D material layer may be in direct contact with each other. The second semiconductor material may include germanium.
Abstract:
Provided are a graphene structure and a method of forming the graphene structure. The graphene structure includes a substrate and graphene on a surface of the substrate. Here, a bonding region in which a material of the substrate and carbon of the graphene are covalently bonded is formed between the surface of the substrate and the graphene.
Abstract:
Provided are a complex of heterogeneous two-dimensional materials and a method of manufacturing the same. The complex of heterogeneous two-dimensional materials may include a substrate; a first two-dimensional material layer on the substrate and having a two-dimensional crystal structure; and a second two-dimensional material layer between the substrate and the first two-dimensional material layer. The second two-dimensional material layer have a two-dimensional crystal structure in which a plurality of phosphorus atoms are covalently bonded to each other.
Abstract:
A semiconductor memory device and a device including the same are provided. The semiconductor memory device includes word lines extending in a first direction on a semiconductor substrate; bit line structures extending across the word lines in a second direction crossing the first direction; contact pad structures between the word lines and between the bit line structures; and spacers between the bit line structures and the contact pad structures. The spacers include a boron nitride layer.