Abstract:
A method for humidifying gas in a ventilator circuit 100, 101, 102, 105. 106 comprises aerosolising a humidifying agent such as water or saline using aerosol generator 2 and delivering the aerosolised humidifying agent, to the inspiration line 101 of the ventilator circuit coupled to the respiratory system of a patient. The aerosol generator 2 comprises a vibratable member 40 having a plurality of apertures extending between a first surface and a second surface. A controller 3 controls the operation of aerosol generator 2, for example in response to the flow of air in the inspiration line 101 as detected by a sensor11.
Abstract:
A method for humidifying gas in a ventilator circuit 100, 101, 102, 105, 106 comprises aerosolising a humidifying agent such as water or saline using an aerosol generator 2 and delivering the aerosolised humidifying agent to the inspiration line 101 of the ventilator circuit coupled to the respiratory system of a patient. The aerosol generator 2 comprises a vibratable member 40 having a plurality of apertures extending between a first surface and a second surface. A controller 3 controls the operation of aerosol generator 2, for example in response to the flow of air in the inspiration line 101 as detected by a sensor 11.
Abstract:
A nebulizer has an aperture plate, a mounting, an actuator, and an aperture plate drive circuit (2-4). A controller measures an electrical drive parameter at each of a plurality of measuring points, each measuring point having a drive frequency; and based on the values of the parameter at the measuring points makes a determination of optimum drive frequency and also an end-of-dose prediction. The controller performs a short scan at regular sub-second intervals at which drive current is measured at two measuring points with different drive frequencies. According to drive parameter measurements at these points the controller determines if a full scan sweeping across a larger number of measuring points should be performed. The full scan provides the optimum drive frequency for the device and also an end of dose indication.
Abstract:
A nebuliser has a housing (19) having a reservoir (2) for the medicament. An aerosol generator (7) receives the medicament by gravity flow and aerosolizes the medicament. A gas venting inlet (21) permits a gas to enter the nebuliser and forms a mixture with the aerosol. There is a passage (20, 24) through which the mixture of the aerosol and the gas is delivered to an outlet port (24) of the nebuliser. The housing has a baffle (25) to direct the mixture of the gas and the aerosol to the outlet port (24), the baffle having an inclined surface oriented to cause aerosol to flow through the outlet port, the baffle being inclined towards the outlet port
Abstract:
A high flow nasal therapy system (1) has a gas supply (2), a nebulizer (12), and a nasal interface (7). There are two branches (11, 10) and a valve (6) linked with the controller, the branches including a first branch (11) for delivery of aerosol and a second branch (10) for delivery of non-aerosolized gas. The controller controls delivery into the branches (11, 10), in which flow is unidirectional in the first and second branches, from the gas supply towards the nasal interface. The first branch (11) includes the nebulizer (12) and a line configured to store a bolus of aerosol during flow through the second branch (10). The valve (6) comprises a Y-junction between the gas inlet on one side and the branches on the other side.
Abstract:
A high flow nasal therapy system (1) has a gas supply (2), a nebulizer (12), and a nasal interface (7). There are two branches (11, 10) and a valve (6) linked with the controller, the branches including a first branch (11) for delivery of aerosol and a second branch (10) for delivery of non-aerosolized gas. The controller controls delivery into the branches (11, 10), in which flow is unidirectional in the first and second branches, from the gas supply towards the nasal interface. The first branch (11) includes the nebulizer (12) and a line configured to store a bolus of aerosol during flow through the second branch (10). The valve (6) comprises a Y-junction between the gas inlet on one side and the branches on the other side.
Abstract:
A nebulizer has an aperture plate, a mounting, an actuator, and an aperture plate drive circuit (2-4). A controller measures an electrical drive parameter at each of a plurality of measuring points, each measuring point having a drive frequency; and based on the values of the parameter at the measuring points makes a determination of optimum drive frequency and also an end-of-dose prediction. The controller performs a short scan at regular sub-second intervals at which drive current is measured at two measuring points with different drive frequencies. According to drive parameter measurements at these points the controller determines if a full scan sweeping across a larger number of measuring points should be performed. The full scan provides the optimum drive frequency for the device and also an end of dose indication.