Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with an unmanned aerial vehicle (UAV). Data collected by the UAV corresponding to points on a surface of a structure is received and a 3D point cloud is generated for the structure, where the 3D point cloud is generated based at least in part on the received UAV data. A 3D model of the surface of the structure is reconstructed using the 3D point cloud.
Abstract:
Systems and methods for assessing a physical structure are provided. Information indicative of an infrared image that includes a portion of the physical structure is received, and one or more indicators within the infrared image exceeding a heat threshold are determined. A plurality of characteristics of the one or more indicators are determined. One or more edges of the portion of the physical structure are detected, and an area associated with an intended use of one or more fasteners associated with the physical structure is determined according to the detected edges. An amount of the one or more indicators corresponding to the area is determined, and the one or more indicators are classified as fasteners according to the determined amount. Based on the classification of the one or more indicators, a condition of the physical structure is determined.
Abstract:
In a system and method for inspecting a property, a microphone receives one or more audio waves propagating from a structure. One or more processors generate a 3D point cloud based on the received audio waves, analyzed the generated 3D point cloud to identify features of a surface or subsurface of the structure, and generate an estimate of a condition of the surface or subsurface.
Abstract:
In a system and method for inspecting a property, a microphone receives one or more audio waves propagating from a structure. One or more processors generate a 3D point cloud based on the received audio waves, analyzed the generated 3D point cloud to identify features of a surface or subsurface of the structure, and generate an estimate of a condition of the surface or subsurface.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
A tethering system for a remote-controlled device includes a tether line having a first end adapted to be connected to a ground support and a second end adapted to be connected to the remote-controlled device. The system further includes an anchor-point disposed between the first and second ends of the tether line, the anchor point having an eyelet for securing the tether line and allowing the tether line to slide through the eyelet during use. The anchor-point and eyelet enable the tether line to flex or bend and the remote-controlled device to maneuver one or more of over or around the target area without interfering with any nearby obstructions.
Abstract:
The method and system may be used to control the movement of a remote aerial device in an incremental step manner during a close inspection of an object or other subject matter. At the inspection location, a control module “stabilizes” the remote aerial device in a maintained, consistent hover while maintaining a close distance to the desired object. The control module may retrieve proximal sensor data that indicates possible nearby obstructions to the remote aerial device and may transmit the data to a remote control client. The remote control module may determine and display the possible one or more non-obstructed directions that the remote aerial device is capable of moving by an incremental distance. In response to receiving a selection of one of the directions, the remote control module may transmit the selection to the remote aerial device to indicate the next movement for the remote aerial device.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
A tethering system for a remote-controlled device comprising a tether line having a first end adapted to be connected to a ground support and a second end adapted to be connected to the remote-controlled device. The system further includes an anchor-point disposed between the first and second ends of the tether line, the anchor point having an eyelet for securing the tether line and allowing the tether line to slide through the eyelet during use. The anchor-point and eyelet enable the tether line to flex or bend and the remote-controlled device to maneuver one or more of over or around the target area without interfering with any nearby obstructions.
Abstract:
A computer-implemented method includes detecting a distinct area within an image, comparing detected features of the distinct area within the image to reference features corresponding to a reference image, and determining that the detected distinct area matches the reference image based on the comparison between the detected features and the reference features. The method further includes receiving an indication that the user selects the detected distinct area within the image, retrieving contact information corresponding to the reference image, and causing the client device to display an interface allowing the user to contact the entity.