Abstract:
A dual rail SRAM array includes a plurality of columns of memory cells each coupled between two bit lines. A sense amplifier is coupled between each pair of bit lines. Capacitors are positioned between the sense amplifier outputs and the bit lines, thereby separating the sense amplifier from the bit lines. The memory cells are powered with an array supply voltage. The sense amplifier is powered with a peripheral supply voltage. During a read operation of the memory array, the bit lines are precharged to the array supply voltage. The sense amplifier is precharged to the peripheral supply voltage or to an intermediate voltage.
Abstract:
A memory includes an array of active memory cells arranged in rows and columns, and at least one dummy memory cell column adjacent the array of active memory cells. A sensing circuit is coupled to the at least one dummy memory cell column to sense at least one variation associated with the at least one dummy memory cell column. An assist circuit is coupled to the array of active memory cells. An assist determination controller is coupled to the sensing circuit to store a look-up table of output assist values corresponding to different variations associated with the at least one dummy memory cell column, to determine an output assist value from the look-up table based upon the at least sensed variation, and to operate the assist circuit based upon the determined output assist value.
Abstract:
A memory cell includes a true data node, a true pullup transistor, a complement data node and a complement pullup transistor. A true switching circuit selectively supplies a first or second supply voltage to a source of the true pullup transistor. A true bias switching circuit selectively supplies a third or fourth supply voltage to a body of the true pullup transistor. When writing a logic high data value to the true data storage node, a control circuit causes the true switching circuit to supply the second supply voltage and the true bias switching circuit to supply the third supply voltage. The second supply voltage is higher than the first supply voltage, and the fourth supply voltage is higher than the third supply voltage. A similar operation is performed with respect to the complement pullup transistor when writing a logic high data value to the complement data storage node.
Abstract:
Systems and devices are provided to enable granular control over a retention or active state of each of a plurality of memory circuits, such as a plurality of memory cell arrays, within a memory. Each respective memory array of the plurality of memory arrays is coupled to a respective ballast driver and a respective active memory signal switch for the respective memory array. One or more voltage regulators are coupled to a ballast driver gate node and to a bias node of at least one of the respective memory arrays. In operation, the respective active memory signal switch for a respective memory array causes the respective memory array to transition between an active state for the respective memory array and a retention state for the respective memory array.
Abstract:
A memory array arranged in multiple columns and rows. Computation circuits that each calculate a computation value from cell values in a corresponding column. A column multiplexer cycles through multiple data lines that each corresponds to a computation circuit. Cluster cycle management circuitry determines a number of multiplexer cycles based on a number of columns storing data of a compute cluster. A sensing circuit obtains the computation values from the computation circuits via the column multiplexer as the column multiplexer cycles through the data lines. The sensing circuit combines the obtained computation values over the determined number of multiplexer cycles. A first clock may initiate the multiplexer to cycle through its data lines for the determined number of multiplexer cycles, and a second clock may initiate each individual cycle. The multiplexer or additional circuitry may be utilized to modify the order in which data is written to the columns.
Abstract:
A memory management circuit stores information indicative of reliability-types of regions of a memory array. The memory management circuitry responds to a request to allocate memory in the memory array to a process by determining a request type associated with the request to allocate memory. Memory of the memory array is allocated to the process based on the request type associated with the request to allocate memory and the stored information indicative of reliability-types of regions of the memory array. The memory array may be a shared memory array. The memory array may be organized into rows and columns, and the regions of the memory array may be the rows of the memory array.
Abstract:
A system includes a random access memory organized into individually addressable words. Streaming access control circuitry is coupled to word lines of the random access memory. The streaming access control circuitry responds to a request to access a plurality of individually addressable words of a determined region of the random access memory by generating control signals to drive the word lines to streamingly access the plurality of individually addressable words of the determined region. The request indicates an offset associated with the determined region and a pattern associated with the streaming access.
Abstract:
A memory cell includes a true data node, a true pullup transistor, a complement data node and a complement pullup transistor. A true switching circuit selectively supplies a first or second supply voltage to a source of the true pullup transistor. A true bias switching circuit selectively supplies a third or fourth supply voltage to a body of the true pullup transistor. When writing a logic high data value to the true data storage node, a control circuit causes the true switching circuit to supply the second supply voltage and the true bias switching circuit to supply the third supply voltage. The second supply voltage is higher than the first supply voltage, and the fourth supply voltage is higher than the third supply voltage. A similar operation is performed with respect to the complement pullup transistor when writing a logic high data value to the complement data storage node.
Abstract:
A memory calibration system includes a memory array having a plurality of memory cells, a sensing circuit coupled to the memory array, and calibration circuitry. A pattern of test data is applied to the memory array in order to generate calibration information based on output provided by the first sensing circuit in response to the application of the pattern of test data to the memory array. The generated calibration information is stored in a distributed manner within memory cells of the memory array. Some of the generated calibration information may be combined with data values stored in the plurality of memory cells as part of one or more operations on the stored data values. The stored data values may be stored in an in-memory compute cluster of the memory array, such that operations on the stored data values include combining the multiple data values of the in-memory compute cluster with at least a portion of the generated calibration information as at least part of an in-memory compute operation for the in-memory compute cluster.
Abstract:
Systems and devices are provided to enable granular control over a retention or active state of each of a plurality of memory circuits, such as a plurality of memory cell arrays, within a memory. Each respective memory array of the plurality of memory arrays is coupled to a respective ballast driver and a respective active memory signal switch for the respective memory array. One or more voltage regulators are coupled to a ballast driver gate node and to a bias node of at least one of the respective memory arrays. In operation, the respective active memory signal switch for a respective memory array causes the respective memory array to transition between an active state for the respective memory array and a retention state for the respective memory array.