Abstract:
A system comprising a transmitter element creating an interrogation signal and transmitting the interrogation signal and a receiver element receiving a reflection signal of the interrogation signal and combining the reflection signal and a feedback signal to cancel at least a portion of radio frequency echo signals in the reflection signal.
Abstract:
Described herein are methods, devices and systems for characterizing an attached antenna to an electronic device, such as a radio frequency identification ("RFID") reader. One exemplary embodiment is related to a method comprising outputting a low amplitude modulation ("AM") index radio frequency ("RF") waveform, the waveform simulating tag data timing and bandwidth, removing a direct current ("DC") component from the waveform to create a chopped portion of the waveform, applying at least one vector analyzer technique on the chopped portion of the waveform, characterizing at least one antenna impedance vector of the waveform.
Abstract:
A system having a mobile device and a wearable mount configured to couple to the mobile device, the coupling making the mobile device wearable at a worn location, wherein a set of functionalities of the mobile device corresponds to the worn location. The wearable mount having a coupler configured to couples to a mount coupling of a mobile device and a fastener that fastens the wearable mount to a location, the location, a set of functionalities of the mobile device being based on the location.
Abstract:
Methods, systems, and apparatuses for testing radio frequency identification (RFID) tags are described. The tags are tested using a direct connection scheme, where a testing apparatus makes direct contact with a portion of a tag in order to perform a test on the tag. For example, the testing apparatus may read data from the tag to verify operation. Any number of tags may be tested at a time, including one tag at a time, or multiple tags in parallel.
Abstract:
An object location system and method is provided for locating objects. The system includes an RFID reader, an angle calculator, and a distance calculator to determine which of a plurality of zones an object is located in or passing through. An RFID tag is affixed with the object that is to be located. The RFID reader transmits signals to the RFID tag and receives backscatter-modulated signals from the RFID tag at one or more RFID antennas. From those received signals, the angle calculator determines an angle of position of the RFID tag relative to the RFID antenna. From the angle of position the zone in which the object is located is determined.
Abstract:
An RFID relay device for an RFID transponder and methods are provided for relaying an RFID signal. The RFID relay device comprises at least two antenna and a transmission line coupling the at least two antenna. In addition to the two antenna and the transmission line, the RFID relay device comprises an impedance adjusting circuit coupled to the transmission line and configured for coupling to the RFID transponder.
Abstract:
Method, systems and apparatuses for RFID readers forming a reader network (100) are described In an aspect of the present inventio plurality of RFID readers (104) are configured to interrogate tags (102) Furthermore, the readers are configured to communicate wit one another by transferring a token, represented by a signal Possession of the token enables the reader to access a RF communicati medium Readers can be arranged in a ring configuration (figure 1), and interconnected via wired links A secondary token may circulate in the ring in addition to the primary token, to ensure redundancy in the system A reader waits for a predetrmined time inte before accessing the RF communication medium.
Abstract:
A system having a mobile device and a wearable mount configured to couple to the mobile device, the coupling making the mobile device wearable at a worn location, wherein a set of functionalities of the mobile device corresponds to the worn location. The wearable mount having a coupler configured to couples to a mount coupling of a mobile device and a fastener that fastens the wearable mount to a location, the location, a set of functionalities of the mobile device being based on the location.
Abstract:
Methods, systems, and apparatuses for a reader transceiver circuit are described. The reader transceiver circuit incorporates a frequency generator, such as a surface acoustic wave (SAW) oscillator. A reader incorporating the reader transceiver circuit is configured to read a tag at very close range, including while being in contact with the tag. The transceiver can be coupled to various host devices in a variety of ways, including being located in a RFID reader (e.g., mobile or fixed position), a computing device, a barcode reader, etc. The transceiver can be located in an RFID module that is attachable to a host device, can be configured in the host device, or can be configured to communicate with the host device over a distance. The RFID module may include one or more antennas. The RFID module may include a detector that is configured to determine proximity. The detector may act as a trigger.
Abstract:
A rugged, mobile, wireless data capture device with an integrated radio frequency identification ("RFID") reader is described. The wireless data capture device includes a durable, sealed enclosure. A wireless microprocessor is mounted within the enclosure. An RFID reader is coupled to the wireless microprocessor and mounted within the enclosure. The enclosure also supports a mounted communications antenna that is communicatively coupled to the wireless microprocessor, as well as RFID reader antenna communicatively coupled to the RFID reader. A power supply system supplies power to the data capture device. Finally, the durable, sealed enclosure includes mounting means for securing the enclosure to industrial equipment in a manner that mitigates effects of physical shock and vibration.