Abstract:
A thin film transistor (TFT) circuit panel comprises a substrate and first and second patterned multi-layer structures formed over the substrate. The first patterned multi-layer structure is to provide a driving TFT and a storage capacitor, and comprises: a semiconductor layer, a first electrode over the semiconductor layer, a second electrode disposed over the first electrode and insulated from the first electrode, a storage insulating layer disposed between the first electrode and the second electrode, and a driving gate insulating layer disposed between the semiconductor layer and the first electrode. The second patterned multi-layer structure is spaced from the first multi-layer structure, and comprises: a lower patterned insulating layer, a patterned conductive layer and a top patterned insulating layer. An organic insulating material is filled between the first and second patterned multi-layer structures.
Abstract:
A display apparatus includes a first insulating layer disposed on a substate and including an opening filled with an organic material and a first-first insulating portion arranged inside the opening, a second insulating layer disposed on the first insulating layer and including a first-first through-hole filled with the organic material and connected to the opening and a first-second insulating portion arranged inside the first-first through-hole, a third insulating layer disposed on the second insulating layer and including a first-second through-hole filled with the organic material and connected to the first-first through-hole, a target arranged between the first-first insulating portion and the first-second insulating portion and arranged inside the first-first through-hole, and a shield portion disposed on the second insulating layer or the third insulating layer and overlapping the target in a plan view.
Abstract:
A display device and method of manufacturing the same are disclosed. In one aspect, the display device includes a first line extending in a first direction, a second line extending in a second direction, and a storage capacitor electrically connected to at least one of the first line and the second line. The first line includes a first metal pattern layer extending in the first direction, an intermediate insulating layer formed over the first metal pattern layer, and a second metal pattern layer formed over the first metal pattern layer and the intermediate insulating layer. The second metal pattern layer extends in the first direction. The first line also includes a third metal pattern layer electrically connecting the first metal pattern layer to the second metal pattern layer via a contact hole.
Abstract:
A method of manufacturing an organic light-emitting display apparatus using a light-blocking photoresist layer which minimizes damage to an intermediate layer, including an emission layer, during a process for manufacturing the organic light-emitting display apparatus.
Abstract:
A display device is disclosed. In one aspect, the device includes a substrate including a display area displaying an image via a plurality of pixels and a non-display area adjacent to the display area. The device also includes a first line and a second line in the display area. The display device also includes a first connection line and a second connection line in the non-display area, wherein the first and second connection lines are respectively connected to the first and second lines and extend in different directions to cross each other. The display device also includes an insulating layer formed over the substrate and including a first portion and a second portion, the first portion corresponding to the display area and the second portion corresponds to a crossing area where the first and second connection lines cross each other, the thickness of the first and second portions are different.
Abstract:
A thin film transistor includes an active pattern formed on a substrate; a gate pattern formed on the active pattern and comprising a gate electrode and a gate line; a gate insulating layer disposed between the gate pattern and the active pattern; a source electrode that overlaps a first side of the active pattern and contacts a data line; a drain electrode that overlaps a second side of the active pattern and is separated from the source electrode; a channel area formed in an area where the gate line and an active line of the active pattern overlap each other; and a gate line modifying unit formed in the channel area by changing a linear shape of the gate line.