Abstract:
Semiconductor light-emitting devices, and semiconductor light-emitting packages, include at least one light-emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially stacked on a substrate, the at least one light-emitting structure having a first region and a second region delimiting the first region. The light-emitting device includes a groove in the second region, and the groove is adjacent to an edge of the substrate and extends parallel to the edge of the substrate.
Abstract:
A three-dimensional semiconductor memory device is provided. The semiconductor memory device includes first horizontal conductive lines on a substrate in a first direction, each of the first horizontal conductive lines extending in a second direction different from the first direction, second horizontal conductive lines stacked on the substrate in the first direction, each of the second horizontal conductive lines extending in the second direction, a vertical conductive line between the first horizontal conductive line and the second horizontal conductive line and extending in the first direction, a plurality of first magnetic tunnel junction patterns between the vertical conductive line and each of the first horizontal conductive lines, and a plurality of second magnetic tunnel junction patterns between the vertical conductive lines and each of the second horizontal conductive lines. The first horizontal conductive lines and the second horizontal conductive lines are spaced apart from each other in a third direction.
Abstract:
A semiconductor device is provided. The semiconductor device includes a first stacked structure including a plurality of first insulating patterns and a plurality of first semiconductor patterns alternately stacked on a substrate, the first stacked structure extending in a first direction parallel to an upper surface of the substrate, a first conductive pattern on one side surface of the first stacked structure, the first conductive pattern extending in a second direction crossing the upper surface of the substrate, and a first ferroelectric layer between the first stacked structure and the first conductive pattern, the first ferroelectric layer extending in the second direction, wherein each of the first semiconductor patterns includes a first impurity region, a first channel region and a second impurity region which are sequentially arranged along the first direction.
Abstract:
A semiconductor device includes interlayer insulating layers and horizontal structures alternately and repeatedly disposed on a semiconductor substrate, separation structures extending in a direction perpendicular to an upper surface of the semiconductor substrate on the semiconductor substrate, to extend in a first horizontal direction parallel to the upper surface of the semiconductor substrate, and vertical structures disposed between the separation structures. Each of the horizontal structures includes a plurality of semiconductor regions, and the plurality of semiconductor regions of each of the plurality of semiconductor regions include a first semiconductor region and a second semiconductor region sequentially arranged in a direction away from a side surface of a corresponding one of the vertical structures and having different conductivity types.
Abstract:
An electronic device is provided. The electronic device includes a transparent member, a display positioned under a transparent member that includes a plurality of pixels, an image sensor positioned under some areas of the display, a memory, and a processor. The processor obtains a first image at least based on light output through at least some of the plurality of pixels and reflected by an external object coming into contact with the transparent member using the image sensor, performs authentication on the external object at least based on the at least one template using the first image, generates a second image of the external object at least based on the first image when quality of the first image corresponds to a given condition based on a result of the authentication, and performs authentication on the external object at least based on the at least one template using the second image.
Abstract:
A semiconductor device includes a memory cell region including memory cells arranged along channel holes, the channel holes being provided on a substrate to extend in a direction perpendicular to an upper surface of the substrate, and a peripheral circuit region disposed outside of the memory cell region and including low voltage transistors and high voltage transistors, The low voltage transistors include first transistors including a first gate dielectric layer and a first gate electrode layer including a metal, and the high voltage transistors include second transistors including a second gate dielectric layer having a dielectric constant lower than a dielectric constant of the first gate dielectric layer, and a second gate electrode layer including polysilicon.
Abstract:
Provided are semiconductor devices. The semiconductor device includes a substrate, a gate structure disposed on the substrate and extending in a first direction, and an active pattern spaced apart from the substrate in a second direction, extending in a third direction, and penetrating the gate structure, wherein the active pattern includes a two-dimensional material, the gate structure comprises a gate insulating layer, a lower gate conductive layer, a ferroelectric layer, and an upper gate conductive layer, which are sequentially stacked on the active pattern, the gate insulating layer includes hexagonal boron nitride (h-BN), and the ferroelectric layer includes a bilayer of a two-dimensional material.
Abstract:
A non-volatile memory device includes a substrate; an insulating layer on the substrate; a bit line isolation layer on the insulating layer; a common source line conductive layer on the bit line isolation layer; a ferroelectric memory cell on the bit line isolation layer; a bit line connected to a top of the ferroelectric memory cell; and a common source line connected to the common source line conductive layer and electrically connected to the ferroelectric memory cell, wherein the ferroelectric memory cell includes a ferroelectric layer, a channel layer, a first conductive filler connected to the ferroelectric layer and the channel layer and extending in a vertical direction, and a second conductive filler connected to the ferroelectric layer and the channel layer and extending in the vertical direction, the first conductive filler is connected to the bit line, and the second conductive filler is connected to the common source line.
Abstract:
A semiconductor device includes a lower stack structure that includes a lower word line, an upper stack structure that is on the lower stack structure and includes an upper word line, a decoder that is adjacent to the lower stack structure and the upper stack structure, a signal interconnection that is connected to the decoder, a lower selector that is connected to the signal interconnection and further connected to the lower word line, and an upper selector that is connected to the signal interconnection, isolated from direct contact with the lower selector, and further connected to the upper word line.
Abstract:
A semiconductor device includes a lower stack structure that includes a lower word line, an upper stack structure that is on the lower stack structure and includes an upper word line, a decoder that is adjacent to the lower stack structure and the upper stack structure, a signal interconnection that is connected to the decoder, a lower selector that is connected to the signal interconnection and further connected to the lower word line, and an upper selector that is connected to the signal interconnection, isolated from direct contact with the lower selector, and further connected to the upper word line.