Abstract:
Systems and methods are provided for patterning biological and non-biological material at specific sites on a plate, as well as growing three dimensional structures. Preferred embodiments comprise a plate with regions that will trap gas, usually in the form of bubbles, when the plate is submerged in liquid. Other embodiment of the present invention include a method for placing materials on the plate at pre-determined locations through the use of trapped gas to prevent materials from collecting at unwanted regions. The plate has great utility for plating cells and tissues at specific sites, such as on an array. The disclosed method can also be used to coat the surface of a plate with coatings at specific locations for patterned coating applications and to build up materials to produce three dimensional structures, including micromechanical structures—where the structures may be formed from living or non-living material, tissue or non-tissue, organic or inorganic, and the like.
Abstract:
Non-intrusive monitoring and workflow assessment to optimize manufacturing environments are described herein. The systems and method combines computer vision and energy load disaggregation to track worker activity and equipment usage and status. These events are then correlated to optimize workflows and energy efficiency.
Abstract:
Micro-electromagnetically actuated latched miniature relay switches formed from laminate layers comprising a spring and magnet, electromagnetic coils, magnetic latching material, and transmission line with contacts. Preferably the miniature relay switches transmit up to about 50 W of DC or AC line power, and carry up to about 10 A of load current, with an overall volume of less than about 100 mm3. In addition to switching large power, the device preferably requires less than 3 V to actuate, and has a latching feature that retains the switch state after actuation without the need for external applied voltage or current.
Abstract:
An electronic substrate or interposer comprising nanoporous films, such as anodic aluminum oxide, containing vertically etched openings (“vias”) that are filled with a conductive material, forming a high density collection of vertically oriented vias that conduct electricity from one side of the substrate to the other.
Abstract:
An electronic substrate or interposer comprising nanoporous films, such as anodic aluminum oxide, containing vertically etched openings (“vias”) that are filled with a conductive material, forming a high density collection of vertically oriented vias that conduct electricity from one side of the substrate to the other.
Abstract:
Micro-electromagnetically actuated latched miniature relay switches formed from laminate layers comprising a spring and magnet, electromagnetic coils, magnetic latching material, and transmission line with contacts. Preferably the miniature relay switches transmit up to about 50 W of DC or AC line power, and carry up to about 10 A of load current, with an overall volume of less than about 100 mm3. In addition to switching large power, the device preferably requires less than 3 V to actuate, and has a latching feature that retains the switch state after actuation without the need for external applied voltage or current.
Abstract:
Micro-electromagnetically actuated latched miniature relay switches formed from laminate layers comprising a spring and magnet, electromagnetic coils, magnetic latching material, and transmission line with contacts. Preferably the miniature relay switches transmit up to about 50 W of DC or AC line power, and carry up to about 10 A of load current, with an overall volume of less than about 100 mm3. In addition to switching large power, the device preferably requires less than 3 V to actuate, and has a latching feature that retains the switch state after actuation without the need for external applied voltage or current.