Abstract:
A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a first recess adjacent to two sides of the gate structure; forming an epitaxial layer in the first recess; removing part of the epitaxial layer to forma second recess; and forming an interlayer dielectric (ILD) layer on the gate structure and into the second recess.
Abstract:
A metal gate process for polishing and oxidizing includes the following steps. A first dielectric layer having a trench is formed on a substrate. A barrier layer and a metal layer are formed sequentially to cover the trench and the first dielectric layer. A first chemical mechanical polishing process including a slurry of H2O2 with the concentration of 0˜0.5 weight percent (wt. %) is performed to polish the metal layer until the barrier layer on the first dielectric layer is exposed. A second chemical mechanical polishing process including a slurry of H2O2 with the concentration higher than 1 weight percent (wt. %) is performed to polish the barrier layer as well as oxidize a surface of the metal layer remaining in the trench until the first dielectric layer is exposed, thereby a metal oxide layer being formed on the metal layer.
Abstract translation:用于抛光和氧化的金属浇口工艺包括以下步骤。 在衬底上形成具有沟槽的第一电介质层。 依次形成阻挡层和金属层以覆盖沟槽和第一介电层。 执行包括浓度为0〜0.5重量%(重量%)的H 2 O 2的浆料的第一化学机械抛光工艺,以抛光金属层直到暴露第一介电层上的阻挡层。 执行包括浓度高于1重量%(重量%)的H 2 O 2的浆料的第二化学机械抛光方法以抛光阻挡层以及氧化残留在沟槽中的金属层的表面,直到第一介电层 被暴露,从而在金属层上形成金属氧化物层。
Abstract:
A high electron mobility transistor (HEMT) includes a buffer layer on a substrate, a barrier layer on the buffer layer, a gate electrode on the barrier layer, a first passivation layer adjacent to two sides of the gate electrode, and a p-type semiconductor layer between the gate electrode and the barrier layer. Preferably, a corner of the p-type semiconductor layer contacting a sidewall of the first passivation layer includes a first curve, and a bottom surface of the p-type semiconductor layer directly on the first passivation layer includes a second curve.
Abstract:
A semiconductor device includes a substrate having a magnetic tunneling junction (MTJ) region and a logic region, an inter-metal dielectric (IMD) layer on the substrate, a MTJ in the IMD layer on the MTJ region, a first metal interconnection in the IMD layer on the logic region, and protrusions adjacent to two sides of the first metal interconnection. Preferably, the MTJ further includes a bottom electrode, a fixed layer, a barrier layer, a free layer, and a top electrode.
Abstract:
A high electron mobility transistor (HEMT) includes a buffer layer on a substrate, a barrier layer on the buffer layer, a gate electrode on the barrier layer, a first passivation layer adjacent to two sides of the gate electrode, and a p-type semiconductor layer between the gate electrode and the barrier layer. Preferably, a corner of the p-type semiconductor layer contacting a sidewall of the first passivation layer includes a first curve, and a bottom surface of the p-type semiconductor layer directly on the first passivation layer includes a second curve.
Abstract:
A method for forming a tunneling field effect transistor is disclosed, which includes the following steps. First, a semiconductor substrate is provided. A source region is formed on the semiconductor substrate. A tunneling region having a sidewall and a top surface is formed on the source region. A drain region is formed on the tunneling region. A gate dielectric layer is then formed, covering the sidewall and the top surface of the tunneling region. A first metal layer is formed, covering the gate dielectric layer. Subsequently, an anisotropic etching process is performed to remove a portion of the first metal layer. After the anisotropic etching process, a second metal layer is fabricated to cover the remaining first metal layer and the gate dielectric layer.
Abstract:
A semiconductor structure includes a substrate, a plurality of fin shaped structures, a trench, and a first bump. The substrate has a base, and the fin shaped structures protrude from the base. The trench is recessed from the base of the substrate. The first bump is disposed within the trench and protrudes from a bottom surface of the trench. A width of the first bump is larger than a width of each of the fin shaped structures.
Abstract:
A fin structure and a method of forming the same, where the fin structure includes a fin and a protrusion having irregular shape. The fin and the protrusion are both formed on a substrate, and the protrusion has a height less than that of the fin. With such arrangement, the fin structure of the present invention, as well as the method of forming the same, can achieve the purpose of keeping the fin from collapsing and over etching.
Abstract:
A method of forming a semiconductor structure includes following steps. First of all, a patterned hard mask layer having a plurality of mandrel patterns is provided. Next, a plurality of first mandrels is formed on a substrate through the patterned hard mask. Following these, at least one sidewall image transferring (SIT) process is performed. Finally, a plurality of fins is formed in the substrate, wherein each of the fins has a predetermined critical dimension (CD), and each of the mandrel patterns has a CD being 5-8 times greater than the predetermined CD.
Abstract:
A non-planar semiconductor structure comprises a substrate, at least one fin structure on the substrate, a gate covering parts of the fin structures and part of the substrate such that the fin structure is divided into a channel region stacking with the gate and source/drain region at both sides of the gate, a plurality of epitaxial structures covering on the source/drain region of the fin structures, a recess is provided between the channel region of the fin structure and the epitaxial structure, and a spacer formed on the sidewalls of the gate and the epitaxial structures, wherein the portion of the spacer filling in the recesses is flush with the top surface of the epitaxial structures.