Abstract:
A bi-directional auxiliary lubrication system which allows lubricant to be supplied to moving engine components after a loss of lubricant pressure from a main lubricant tank is disclosed. In a gas turbine engine, the lubrication system may siphon compressed air from a compressor to draw lubricant from a reserve lubricant tank and deliver that lubricant to the engine components. The same conduits used by the lubrication during normal operations are utilized in an opposite direction to provide the flow of lubricant from the reserve lubricant tank during such auxiliary or low-lubricant-pressure operations.
Abstract:
A seal comprises a housing. A coating has at least two layers with a bond layer to be positioned between a housing and a second hard layer. The second hard layer is formed to be harder than the bond layer. The bond layer has a bond strength greater than or equal to 200 psi and less than or equal to 2000 psi. A gas turbine engine, and a method of forming a coating layer are also disclosed.
Abstract:
Disclosed is a gas turbine engine including a plurality of inlet guide vanes. The gas turbine engine further includes an inlet case supporting each of the plurality of inlet guide vanes, and the inlet case is provided with at least one passageway in communication with a source of fluid. The at least one passageway is configured to communicate the fluid to each of the plurality of inlet guide vanes.
Abstract:
A gas turbine engine includes a core housing that includes an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flow path. A first shaft supports a low pressure compressor section that is arranged axially between the inlet case flow path and the intermediate case flow path. A first bearing supports the first shaft relative to the inlet case. A second bearing supports a second shaft relative to the intermediate case. A low pressure compressor hub is mounted to the first shaft. The low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.
Abstract:
A turbine is operably connected to drive a compressor, and to drive a fan through a gear drive. A number of intermediate gears connecting an output shaft of the turbine to a fan drive shaft for the fan. An oil channel collects oil thrown outwardly of the gear drive. A bearing support mounts bearings supporting the fan drive shaft. The oil channel and the bearing support each include mating faces that are bolted together by a plurality of bolts. The bolts extend through oil channel holes in the mating face of the oil channel. The oil channel holes have one dimension which closely receives the bolts and another dimension which is larger than an outer diameter of the extending portion of the bolts, such that the bolts may adjust radially within the oil channel holes.