Abstract:
Integrated ceramic/metallic components and methods of making same are described herein. Embodiments of these integrated ceramic/metallic components comprise a metallic non-foam region; and a ceramic foam region comprising a gradient porosity therein, wherein the ceramic foam region and the metallic non-foam region are integrally formed together to create the integrated ceramic/metallic component. Embodiments of these integrated ceramic/metallic components comprise a metallic region; and a single piece ceramic foam construction comprising a plurality of ceramic foam regions therein, each ceramic foam region comprising a predetermined pore size and a predetermined volume percent porosity, wherein the single piece ceramic foam construction is integrally joined to the metallic region to form the integrated ceramic/metallic component. These components may be utilized in gas turbine engines.
Abstract:
Alignment of the ¢001! crystal axis of a face centered cubic metal with the primary z axis of a single crystal axticle provides good thermal fatigue resistance along the z axis, and minimizes cracking transverse to the axis. However, significant cracking is still observed parallel the z axis in severe applications. This cracking can be reduced by controlling the secondary crystallographic orientation (i.e., orientation of crystal axes within x-y planes transverse to the z axis), to make the ¢110! crystal axis tangent to the article surface in the region most prone to thermal fatigue cracking. Algorithims derived from empirical relationships enable calculation of the orientation likely to produce improved fatigue resistance. More durable single crystal gas turbine blades result when the ¢110! crystal axis is made tangent to the blade surface in the critical crack prone regions just behind the leading edge of the airfoil at about 40-80% of the airfoil span. A representative improved gas turbine blade will have a secondary orientation angle .alpha. of -10 to +20 degrees, where .alpha. is the angle between the ¢100! crystal axis and the y axis.
Abstract:
A component assembly includes a support structure, a ceramic substrate mounted to the support, and a foam-like coating adhered to one of the support structure and the ceramic substrate. The foam-like coating engages the other of the support structure and the ceramic substrate.
Abstract:
A gas turbine engine component includes a wall that provides exterior and interior surfaces. The interior surface faces an internal cooling passage of the gas turbine engine component. An aperture extends through the wall and interconnects the interior and exterior surfaces to one another and is configured to provide a cooling fluid from the cooling passage to the exterior surface. The aperture has first and second outlet holes overlapping one another at an intersection to provide opposing sharp corners at the intersection.
Abstract:
A liner panel for a combustor of a gas turbine engine includes a nominal wall thickness and a thickened wall thickness in the region of a hot spot.