Abstract:
A pressure vessel configured to store a pressurized fluid is provided including a plurality of lobes. Each lobe includes at least one vertically arranged interior wall. The plurality of lobes are positioned in a side by side configuration such that a first interior wall of a first lobe is positioned adjacent a second interior wall of a second adjacent lobe. The first interior wall and the second interior wall are configured to contact one another at a first point of tangency. A first tangent intersects the first lobe at the first point of tangency and a second tangent intersects the second lobe at the first point of tangency. The first tangent and the second tangent are separated by about 120 degrees.
Abstract:
A heat transfer system is disclosed that includes a plurality of electrocaloric elements (12) including an electrocaloric film (14), a first electrode (16) on a first side of the electrocaloric film, and a second electrode (18) on a second side of the electrocaloric film. A fluid flow path (20) is disposed along the plurality of electrocaloric elements, formed by corrugated fluid flow guide elements (19).
Abstract:
A method of generating a smooth optimized part design for a workpiece is presented. Topology optimization is performed based on design objectives, to generate surface data describing an optimized but unfinished surface of the workpiece. The surface data is used to generate volumetric data describing the workpiece structure. A three dimensional smoothing filter is applied to the volumetric data. A manufacturing design is generated from the resulting smoothed volumetric data.
Abstract:
An embodiment of a fan blade includes an interior region between a metallic pressure sidewall and a metallic suction sidewall. Each sidewall extends in span from a base to a tip, and extends in chord from a leading edge to a trailing edge. The interior region of the fan blade includes a first fully dense metallic portion and a first porous metallic portion. The first fully dense metallic portion has a volume occupying at least 10% of a total volume of the interior region, and substantially no porosity. The first porous metallic portion is integrally joined to the fully dense metallic portion, and is selected from a structured lattice, an unstructured foam, and combinations thereof.
Abstract:
A method of generating a smooth optimized part design for a workpiece is presented. Topology optimization is performed based on design objectives, to generate surface data describing an optimized but unfinished surface of the workpiece. The surface data is used to generate volumetric data describing the workpiece structure. A three dimensional smoothing filter is applied to the volumetric data. A manufacturing design is generated from the resulting smoothed volumetric data.
Abstract:
An embodiment of a fan blade includes an interior region between a metallic pressure sidewall and a metallic suction sidewall. Each sidewall extends in span from a base to a tip, and extends in chord from a leading edge to a trailing edge. The interior region of the fan blade includes a first fully dense metallic portion and a first porous metallic portion. The first fully dense metallic portion has a volume occupying at least 10% of a total volume of the interior region, and substantially no porosity. The first porous metallic portion is integrally joined to the fully dense metallic portion, and is selected from a structured lattice, an unstructured foam, and combinations thereof.
Abstract:
A ceramic component retention system includes a metallic component, a ceramic component, and at least one spring element arranged between the metallic component and the ceramic component. The metallic component has a first coefficient of thermal expansion, and the ceramic component has a second coefficient of thermal expansion. The at least one spring element is configured to mechanically couple the ceramic component to the metallic component.
Abstract:
A pressure vessel configured to store a pressurized fluid is provided including a plurality of lobes. Each lobe includes at least one vertically arranged interior wall. The plurality of lobes are positioned in a side by side configuration such that a first interior wall of a first lobe is positioned adjacent a second interior wall of a second adjacent lobe. The first interior wall and the second interior wall are configured to contact one another at a first point of tangency. A first tangent intersects the first lobe at the first point of tangency and a second tangent intersects the second lobe at the first point of tangency. The first tangent and the second tangent are separated by about 120 degrees.
Abstract:
A process is provided involving an agitator. This process includes steps of: (a) disposing an object with the agitator, which object includes an aperture therein; (b) disposing abrasive material within the aperture; and (c) agitating the abrasive material by moving the object using the agitator.
Abstract:
A method of fabricating a functionally graded turbine engine component is disclosed and includes the step of depositing layers of powder onto a base and solidifying/fusing each layer with a first directed energy beam to define a component. The method further includes varying a process parameter between deposited layers to define different material properties within the component. The method also proposes surface enhancement approach that can be used after depositing each layer to locally customize the material properties. The method also proposes machining the different internal surfaces to achieve the proper surface finishing required.