Abstract:
An airfoil includes leading and trailing edges, a first exterior wall extending from the leading edge to the trailing edge and having inner and outer surfaces, a second exterior wall extending from the leading edge to the trailing edge generally opposite the first exterior wall and having inner and outer surfaces, and cavities within the airfoil. A first cavity extends along the inner surface of the first exterior wall and a first inner wall and has an upstream end and a downstream end, and a feed cavity is located between the first inner wall and the second exterior wall.
Abstract:
An airfoil according to an example of the present disclosure includes, among other things, an airfoil section having an external wall and an internal wall. The internal wall defines a reference plane extending in a spanwise direction along a surface of the internal wall, a first cavity and a second cavity separated by the internal wall, and a plurality of crossover passages within the internal wall and connecting the first cavity to the second cavity. Each of the plurality of crossover passages defines a passage axis. The passage axis of each of the plurality of crossover passages is arranged at a radial angle relative to a localized region of the reference plane such that the radial angle of at least some of the plurality of crossover passages differs in the spanwise direction.
Abstract:
One exemplary embodiment of this disclosure relates to a gas turbine engine including a component. The component includes a platform having a mateface on a circumferential side thereof. The platform including a core passageway configured to communicate fluid to the mateface.
Abstract:
A component for a gas turbine engine includes a root with a neck that extends into a fir tree with at least one tooth, the root includes a feed passage in communication with a multiple of cooling passages that extend through the neck and fir tree.
Abstract:
An airfoil for a gas turbine engine includes pressure and suction side walls joined to one another at leading and trailing edges. A stagnation line is located on the pressure side wall aft of the leading edge. A cooling passage is provided between the pressure and suction side walls. Forward-facing cooling holes are provided adjacent to the stagnation line on the pressure side wall and oriented toward the leading edge.
Abstract:
A liner panel for use in a combustor of a gas turbine engine, the liner panel including a cold side; and a rail that extends from the cold side, the rail includes a first diffusion interface passage surface and a second diffusion interface passage surface, the first diffusion interface passage surface angled with respect to the second diffusion interface passage surface.
Abstract:
A gas turbine engine includes a compressor, a combustor fluidly connected to the compressor via a core flowpath, and a turbine fluidly connected to the combustor via the core flowpath. The turbine includes at least one stage having a plurality of rotors and a plurality of vanes. An outer diameter of the core flowpath at at least one stage is at least partially defined by a set of circumferentially arranged blade outer air seals. Each blade outer air seal includes a platform. An internal cooling cavity is defined within the platform. At least one mateface of the platform includes a cooling trench, and a first set of cooling holes connecting the internal cavity to the cooling trench.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. The wall has a wall thickness. A protrusion is arranged on the wall that extends a height beyond the wall thickness and provides a portion of the interior flow path surface. A film cooling hole that has an inlet is provided on the protrusion and extends to an exit on the exterior surface.
Abstract:
A combustor for a gas turbine engine includes a support shell; a first liner panel mounted to the support shell via a multiple of studs, the first liner panel including a first rail that extends from a cold side of the first liner panel such that the rail is non-perpendicular to the cold side and includes a concave surface to at least partially form a curved interface passage; and a second liner panel mounted to the support shell via a multiple of studs, the first liner panel including a second rail that extends from a cold side of the second liner panel and includes a convex surface to at least partially form the curved interface passage.
Abstract:
A coated panel for a gas turbine engine includes a panel having a panel inner surface and a pocket formed in the panel inner surface, the pocket having a pocket depth. A coating is applied to the pocket such that a coating edge is disposed within the pocket to enhance coating retention to the panel. A gas turbine engine includes a turbine, a combustor to supply hot combustion gases to the turbine along a gas path, and one or more coated panels located along the gas path. The one or more panels includes a panel having a panel inner surface, and a pocket formed in the panel inner surface, the pocket having a pocket depth. A coating is applied to the pocket such that a coating edge is located within the pocket to enhance coating retention to the panel.