Abstract:
The present invention relates to a through silicon via (TSV). The TSV is disposed in a substrate including a via opening penetrating through a first surface and a second surface of the substrate. The TSV includes an insulation layer, a barrier layer, a buffer layer and a conductive electrode. The insulation layer is disposed on a surface of the via opening. The barrier layer is disposed on a surface of the insulation layer. The buffer layer is disposed on a surface of the barrier layer. The conductive electrode is disposed on a surface of the buffer layer and a remainder of the via opening is completely filled with the conductive electrode. A portion of the buffer layer further covers a surface of the conductive electrode at a side of the second surface and said portion is level with the second surface.
Abstract:
A method of manufacturing a die seal ring including the following steps is provided. A dielectric layer is formed on a substrate. Conductive layers stacked on the substrate are formed in the dielectric layer. Each of the conductive layers includes a first conductive portion and a second conductive portion. The second conductive portion is disposed on the first conductive portion. A width of the first conductive portion is smaller than a width of the second conductive portion. A first air gap is formed between a sidewall of the first conductive portion and the dielectric layer. A second air gap is formed between a sidewall of the second conductive portion and the dielectric layer.
Abstract:
A connection structure of a semiconductor device is provided in the present invention. The connection structure includes an interlayer dielectric, a top metal structure, and a passivation layer. The interlayer dielectric is disposed on a substrate. The top metal structure is disposed on the interlayer dielectric. The top metal structure includes a bottom portion and a top portion disposed on the bottom portion. The bottom portion includes a first sidewall, and the top portion includes a second sidewall. A slope of the first sidewall is larger than a slope of the second sidewall. The passivation layer is conformally disposed on the second sidewall, the first sidewall, and a top surface of the interlayer dielectric.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, and a capacitor is formed on the substrate and a hard mask on the capacitor, in which the capacitor includes a bottom electrode, a capacitor dielectric layer, and a top electrode. Next, a protective layer is formed on the sidewalls of the top electrode and the bottom electrode, in which the protective layer includes metal oxide.
Abstract:
A method for fabricating a capacitor is disclosed. First, a substrate is provided, a bottom electrode and a capacitor dielectric layer are formed on the substrate, a conductive layer is formed on the capacitor dielectric layer, a patterned hard mask is formed on the conductive layer, a patterned hard mask is used to remove part of the conductive layer to form a top electrode, the patterned hard mask is removed, and a protective layer is formed on a top surface and sidewalls of top electrode. Preferably, the protective layer includes metal oxides.
Abstract:
A die seal ring is provided. The die seal ring includes a substrate and a first layer extruding from the substrate. The first layer has a first fin ring structure and a layout of the first fin ring structure has a stamp-like shape. In addition, a method for forming a die seal ring is provided. A substrate having an active region is provided. A patterned sacrificial layer is formed on the substrate. A spacer is formed on the sidewall of the patterned sacrificial layer. The patterned sacrificial layer is removed. The substrate is patterned by using the spacer as a mask, thereby simultaneously forming at least a fin structure of a Fin-FET and a first layer of the die seal ring.
Abstract:
A semiconductor structure and its manufacturing method are provided. The semiconductor structure includes a substrate, a first dielectric layer on the substrate, a second dielectric layer on the first dielectric layer, a seal ring structure including first and second interconnect structures, and a passivation layer on the seal ring structure and the second dielectric layer. The first interconnect structure is located in the first dielectric layer. The second interconnect structure is located in the second dielectric layer and connected to the first interconnect structure. The passivation layer has a spacer portion covering a sidewall of the second dielectric layer and a portion of the first dielectric layer. A ditch exists in the passivation layer and the first dielectric layer. The spacer portion is located between the ditch and the seal ring structure. The semiconductor structure is able to reduce time and power of an etching process for forming the ditch.
Abstract:
A through silicon via structure is disclosed. The through silicon via includes: a substrate; a first dielectric layer disposed on the substrate and having a plurality of first openings, in which a bottom of the plurality of first openings is located lower than an original surface of the substrate; a via hole disposed through the first dielectric layer and the substrate, in which the via hole not overlapping for all of the plurality of first openings; a second dielectric layer disposed within the plurality of first openings and on a sidewall of the via hole while filling the plurality of first openings; and a conductive material layer disposed within the via hole having the second dielectric layer on the sidewall of the via hole, thereby forming a through silicon via.
Abstract:
A method for forming a through silicon via for signal and a shielding structure is provided. A substrate is provided and a region is defined on the substrate. A radio frequency (RF) circuit is formed in the region on the substrate. A through silicon trench (TST) and a through silicon via (TSV) are formed simultaneously, wherein the TST encompasses the region to serve as a shielding structure for the RF circuit. A metal interconnection system is formed on the substrate, wherein the metal interconnection system comprises a connection unit that electrically connects the TSV to the RF circuit to provide a voltage signal.
Abstract:
A method of programming an anti-fuse includes steps as follows. First, an insulating layer is provided. An anti-fuse region is defined on the insulating layer. An anti-fuse is embedded within the anti-fuse region of the insulating layer. The anti-fuse includes at least a first conductor and a second conductor. Then, part of the insulating layer is removed by a laser to form an anti-fuse opening in the insulating layer. Part of the first conductor and part of the second conductor are exposed through the anti-fuse opening. After that, a under bump metallurgy layer is formed in the anti-fuse opening to connect the first conductor and the second conductor electrically.